Design Consideration of Groundnut Sheller Machine

Ashish S. Raghate
P.G. Student
Department of Mechanical Engg
KDK College of Engineering, Nagpur, R.T.M. Nagpur University, Maharashtra, India

Dr. C. C. Handa
Professor & Head of Department
Department of Mechanical Engg
KDK College of Engineering, Nagpur, R.T.M. Nagpur University, Maharashtra, India

Abstract

Groundnut is grown on small scale farmers in developing countries like India. The average kernel price is approximately twice the price of pod. Lack of groundnut processing machines, especially groundnut Sheller, is a major problem of groundnut production, especially in our country India. A research-work for design, fabricate, and performance evaluation of a groundnut Sheller consisting of feed hopper with a flow rate control device, shelling unit, separating unit and power system. The performance of the machine was evaluated in terms of throughput capacity, shelling efficiency, material efficiency and mechanical damage. Regression models that could be used to express the relationship existing between the Sheller performance indices, pod moisture content and feed rate were establish. This paper describes about the design of various components of groundnut Sheller machine. Hence in this design of various parts are necessary, and design of various parts due to which the design quality of those parts will be improved. Overall, this project involves processes like design, fabrication and assembling of different components etc.

Keywords: Groundnut, Sheller Machine, Efficiency, Design Consideration, Calculations, Design Procedure.

I. INTRODUCTION

The sole purpose of this paper is to understand the fundamental knowledge of design and mechanism of machine. The design is an environment friendly and uses simple mechanism properties such as shelling system, blowing mechanism and automation separating system etc. In this, some crushing force is needed to crush the groundnut. The design is so done that the knowledge of designing, mechanism and forces are increased. This project consists of designing and fabrication of an automatic groundnut Sheller machine considering various important parameters. In this project, designing & development of a machine to crush or shell groundnut so the farmers can gain high profit by selling groundnut direct in market. As well as the study of manufacturing was very important in order to carry out this project to ensure that what are needs to do. This project involves the process of designing the different parts of this shelling machine considering forces and ergonomic factor for people to use. This project is mainly about generating a new concept of groundnut shell (crush) that would make easier to bring anywhere and easier to crush groundnut. After the design has completed, it was transformed to its real product where the design is used for guideline.

II. DESIGN PROCEDURE

The aim is to give the complete design information about the groundnut Sheller machine. In this, the explanations and some other parameters related to the project are included. With references from various sources as journal, thesis, design data book, literature review has been carried out to collect information related to this project.

A. Design consideration

- Maximum Force required to crush groundnut
- Considered shelling speed (velocity ratio)
- Standard size of groundnut
- Material of machine components

B. Design calculations

Determination of crushing power by analytical By, according to KICK’S RELATION
Power required to shell the groundnut H = KK x Fc x ln(L1/L2)
C. Design of V-Belt

Design Power \((P_d) = P_R \times k_L \)

Where, \(P_R \) = rated power, \(k_L = 1.10 \)

Selection of belt on the basis of design power.

Peripheral Velocity, \(V_p = \frac{\pi D_1 N_1}{60} \)

\(D_1 \) = Diameter of smaller pulley i.e. electric motor shaft pulley, \(N_1 \) = Speed of electric motor shaft pulley.

If this velocity i.e. \(V_p \) is in range then, Ok.

Now, assuming Velocity Ratio, \(VR \) to calculate speed of driven pulley.

\(N_1 / N_2 = VR \)

By using velocity ratio with neglecting slip,

\(\frac{N_2}{N_1} = \frac{D_1}{D_2} \)

\(D_2 \) = Diameter of larger pulley Centre to centre distance for V-belt,

\(C = (D_1 + D_2) \) OR \(C = D_2 \)

Angle of lap or contact on smaller pulley, \(\theta_1 = \pi - \frac{D_2 - D_1}{C} \)

Angle of lap or contact on larger pulley, \(\theta_2 = \pi + \frac{D_2 - D_1}{C} \)

Since the smaller value of \(\theta \) for the pulley will govern the design.

Belt Tension Ratio,

\[\frac{F_2}{F_1} = e^{\mu \theta \cot \theta / 2} \]

\(\alpha = \) Groove angle = 34°

\(\mu = \) Coefficient of friction = 0.3

\(F_1 = \) Tension in tight side

\(F_2 = \) Tension in slack side

Belt Tension, \((F_1 - F_2) = \frac{P_d}{V_p} \)

Power Rating Per Belt = \((F_W - F_C) \times e^{\mu \theta / \sin \alpha} \frac{1}{5} \times V_p \)

Working Load, \(F_W \)

Centrifugal Tension, \(F_C = K_C \times \left(\frac{V_p}{5} \right)^3 \)

No. of Strands = \(\frac{P_d}{\text{Power/Belt}} \)

Length of the Belt,

\[L = \pi \times (D_1 + D_2) + 2C + \frac{(D_1 - D_2)^2}{4C} \]

Bending Load, \(F_b = \frac{K_b D}{D} \)

\(K_b = \) Bending stress factor,

\(D = \) Diameter of pulley i.e. smaller or large.

Initial Tension, \(2\sqrt{F_2} = \sqrt{F_1} + \sqrt{F_2} \)

Fatigue Life of Belt, \(F = F_1 + F_C + F_{b_{max}} \)

D. Design of Shaft

Design Torque, \(T_d = \frac{60 \times P \times K_L}{2 \pi N} \)

Load Factor, \(K_L = 1.75 \) (For Line Shaft)

Selecting material of shaft SAE 1030,
\[S_{ult} = 527 \text{ MPa}, S_{ult} = 296 \text{ MPa} \]

\[\tau_{max} \leq 0.30 S_y, \tau_{max} \leq 0.18 S_{ult} \]

Considering F.O.S. = 2
For ductile material with dynamic heavy shocks for machines like forging, shearing and punching etc.

\[\tau_{max} \leq 0.30 S_y = 0.30 \times \frac{296}{2} = 44.4 \text{ N/mm}^2 \]

\[\tau_{max} \leq 0.18 S_{ult} = 0.18 \times \frac{527}{2} = 47.43 \text{ N/mm}^2 \]

Considering minimum of it i.e. \(\tau_{max} = 44.4 \text{ N/mm}^2 \).

Consider Shaft-2 under loading
\(W_{P4} = \text{Weight of pulley.} \)

Fig.: Vertical Shear Force Diagram

Resolving all the force vertically, \(R_{AV} + R_{BV} = W_{PA} + W_{SH} + W_{PD} \)
Taking moment about ‘A’
\(R_{BV} = \text{Vertical Reaction at B} \quad R_{CV} = \text{Vertical Reaction at C} \)
As we know that bending moment at A and D will be Zero.
\(M_{AV} = M_{DV} = 0 \)
\(M_{AV} \) and \(M_{DV} \) are the vertical bending moments at point A and D respectively.
B. M. At C = \(R_{AV} \times 90 \)
Resolving all the forces horizontally,
\(R_{AH} + R_{BH} = F_3 + F_4 \)

Fig.: Horizontal Shear Force Diagram

Taking moment about ‘A’
\((F_3 + F_4) \times 90 = R_{BH} \)
We know that B.M. at A and B will be zero.
\(M_{AH} = M_{BH} = 0 \)
\(M_{AH} \) and \(M_{BH} \) are the horizontal bending moments at point A and B respectively.
B. M. at C, \(M_{CH} = R_{AH} \)
Resultant Bending Moment,
\[M_C = (M_{CV})^2 + (M_{CH})^2 \]

Now, for diameter of shaft,
\[\tau_{max} = \frac{16}{\pi d^3} \sqrt{(K_b M)^2 + (K_t T_d)^2} \]

Now, Recommended value for \(K_b \) and \(K_t \)
For rotating shaft, Suddenly applied load (Heavy shocks) \(K_b = 2 \text{ to } 3, K_t = 1.5 \text{ to } 3, \tau_{max} = 44.4 \text{ N/mm}^2 \)
Consider Shaft - 1 under loading
\(W_{P2} = \text{Weight of pulley-2,} \)
\(W_{P3} = \text{Weight of pulley-3.} \)

Fig.: Vertical Shear Force Diagram
Resolving all the forces vertically,

\[R_{AV} + R_{BV} = W_{P2} + W_{P3} \]

Taking moment about ‘A’

\[W_{P3} + W_{P2} = R_{BV} \]

* \(R_{BV} \) = Vertical Reaction at B

\[R_{AV} = \text{Vertical Reaction at A} \]

We know that B.M. at A and B is zero \(\Rightarrow M_{AV} = M_{BV} = 0 \)

\(M_{AV} \) and \(M_{BV} \) are the vertical bending moments at point A and B respectively.

B.M. at C, \(M_{CV} = R_{AV} \times 35 \)

B.M. at D, \(M_{DV} = R_{BV} \times 60 \)

Resolving all the force horizontally,

\[R_{AH} + R_{BH} = (F_1 + F_2) + (F_3 + F_4) \]

Taking moment about ‘A’

\[R_{BH} \times 180 = (F_1 + F_2) \times 120 + (F_3 + F_4) \]

* \(R_{BH} \) = Horizontal Reaction at B

\[R_{AH} = \text{Horizontal Reaction at A}. \]

We know that B.M. at A and B is zero,

\(\Rightarrow M_{AH} = M_{BH} = 0 \)

\(M_{AH} \) and \(M_{BH} \) are the horizontal bending moments at point A and B respectively.

B.M. at C, \(M_{CH} = R_{AH} \)

B.M. at D, \(M_{DH} = R_{BH} \)

Resultant Bending Moment,

\[M_C = \sqrt{(M_{CV})^2 + (M_{CH})^2} \]

\[M_D = \sqrt{(M_{DV})^2 + (M_{DH})^2} \]

Now, diameter of shaft,

\[\tau_{\text{max}} = \frac{16}{\pi d^2} \sqrt{(K_b M)^2 + (K_t T_d)^2} \]

For rotating shaft Suddenly applied load (Heavy shocks) \(K_b = 2 \) to 3, \(K_i = 1.5 \) to 3 \(\Rightarrow \tau_{\text{max}} = 44.4 \text{ N/mm}^2 \)

E. Design of Pulley

\[L_p = 11 \text{ mm}; b = 3.3 \text{ mm}; h = 8.7 \text{ mm} \]

\[m e = 15 \pm 0.3; f = 9-12 = 10.5; \alpha = 34^\circ; \]

Min. Pitch Diameter, \(D_0 = 75 \text{ mm} \)

Types of construction – Web construction for pulley diameter below 150 mm

Types of construction – Arm construction for pulley diameter above 150 mm i.e. for bigger pulleys.

No. Of Arms = 4, No. Of Sets = 1

Rim thickness, \(t = 0.375 \sqrt{D} + 3 \) (Heavy Duty Pulley) \(D \) = Diameter of pulley
Width of Pulley, \(W = (n - 1) e + 2f \)
Where \(n \) is no. of belts = 1.

Hub Proportions
Hub diameter, \(D_h = 1.5 d_s + 25 \text{ mm} \)
\(d_s = \) Diameter of shaft = 18 mm
Length of Hub, \(L_h = 1.5 d_s \)

Moment on each Arm, \(M = \frac{(P_s - F_g)(D - D_h)}{n} \)
\(n = \) no. of arms
\(D_h = \) Hub diameter

III. FABRICATION

Mechanical Components
- Hopper
- Semicircular net (sieve)
- Roll shaft (main shaft)
- Fan shaft
- Bearing
- Foundation frame
- Pulley (4 Nos.)
- Belt (2 Nos.)
- Fan cover

IV. CONCLUSION

The above design procedure is been adopted for the fabrication of Automatic Groundnut Sheller machine which will make the product durable for long time as well as make it efficient also helps to understand the concept of design. Thus, with help of this design we can fabricate an automatic groundnut Sheller machine to simply achieve high volume of profit as well as to reduce the human fatigue. After all process has been done, shelling operation may help us to understand the fabrication and designing that involved in this project.

REFERENCES

[9] Design for a pedal driven power unit by David Weightman, Lanchester polytechnic, United Kingdom.