Fixed Point Theorems for Mappings Satisfying Certain Contractive Condition of Integral Type

Senthil.S
Department of Mathematics
Indo-American College, Cheyyar

Amudha.S
Department of Mathematics
Indo-American College, Cheyyar

Abstract

We prove two fixed point theorems for mappings satisfying integral type contractive condition. These results extend the work of B.E.Rhoades [7] and Hardy and Rogers [8] to cone metric spaces.

Keywords: Cone metric space, Fixed point theorem, Normal cone, Integral type contraction, Ordered Banach space.

I. INTRODUCTION AND PRELIMINARIES

In 2007, Huang and Zhang [3] introduced the notion of cones and defined cone metric spaces by replacing the real numbers by an ordered Banach space, wherein they established the convergence of sequences and its completeness and proved some fixed point theorems for mappings satisfying certain contractive conditions in the framework of normal cone metric spaces. Subsequently, many fixed point theorems have been proved by several authors [4-7] in the setting of cone metric spaces in which the cone does not need to be normal.

Recently, Farshid Khojasteh, Zahra Goodarzi and Abdolrahman Razani [2], defined a concept of integral with respect to a cone. The results in [2] are the extension of Branciari’s work [1].

The aim of the paper is to prove fixed point theorems for mappings satisfying a general contractive condition of integral type in the setting of normal cone metric spaces. In order to do this the following definitions and results will be needed.

A. Definition 1.1

Let E always be a real Banach space and P a subset of E. Then P is called a cone in E if and only if:

1. P is closed, non-empty and $P \neq \{0\}$,
2. $a, b \in \mathbb{R}$, $a, b \geq 0$, $x, y \in P$ implies $ax + by \in P$,
3. $x \in P$ and $-x \in P$ implies $x = 0$ that is $P \cap (-P) = \{0\}$.

Given a cone $P \subset E$, a partial ordering \leq on E with respect to P is defined by $x \leq y$ if and only if $y - x \in P$. We shall denote $x < y$ to indicate $x \leq y$ but $x \neq y$, while $x \sim y$ will stand for $y - x \in \text{int } P$, where $\text{int } P$ denotes the interior of P.

B. Definition 1.2

A cone $P \subset E$ is called normal if

\[\inf \{ ||x + y|| : x, y \in P, ||x|| = ||y|| = 1 \} > 0 \]

or, equivalently, if there is a number $M > 0$ such that for all $x, y \in P$,

\[0 \leq x \leq y \text{ implies } ||x|| \leq M||y||. \]

(1.1)

The least positive number satisfying (1.1) is called the normal constant of P. It is clear that $M \geq 1$. A cone $P \subset E$ is nonnormal if and only if there exist sequences $\{x_n\}, \{y_n\} \subset P$ such that $0 \leq x_n \leq x_n + y_n$, $x_n + y_n \to 0$ but $x_n \not\to 0$ as $n \to \infty$.

1) Example 1.3.

Let $E = C([0, 1])$ with $\|x\| = \max_{t \in [0, 1]} x(t)$ and consider the cone $P = \{x \in E : x(t) \geq 0 \text{ on } [0,1]\}$. This cone is not normal. For instant, set $\|x_0\| = \|y_0\| = 1$ and $\|x_0 + y_0\| = 2/(n+2) \to 0$ as $n \to \infty$.

Then, $\|x_n\| = \|y_n\| = 1$ and $\|x_n + y_n\| = 2/(n+2) \to 0$ as $n \to \infty$.

In the sequel, we always suppose that E is a real Banach space, P is a cone in E with $\text{int } P \neq \Phi$ and \leq is a partial ordering with respect to P.

C. Definition 1.4

Let X be a nonempty set. Suppose the mapping $d : X \times X \to E$ satisfies

1. $0 \leq d(x, y)$ and $d(x, y) = 0$ if and only if $x = y$.
Fixed Point Theorems for Mappings Satisfying Certain Contractive Condition of Integral Type
(IJIRST/ Volume 1 / Issue 6 / 012)

Then d is called a cone metric on X and the pair (X, d) is called a cone metric space.

2) Example 1.5.
Let E = R², P = \{(x, y) ∈ E : x, y ≥ 0\} ⊆ R².
Choose X = R and define d : X x X → E such that
\[d(x, y) = (|x-y|, \alpha |x-y|), \alpha ≥ 0 \]
is a constant.

Then (X, d) is a cone metric space.
Moreover, the category of cone metric spaces is bigger than the category of metric spaces.

D. Definition 1.6.
Let (X, d) be a cone metric space. Let \{xₙ\} be a sequence in X and x ∈ X. If for every \(c \in E\) with \(0 \ll c\), there is \(n₀\) such that for all \(n > n₀\), \(d(xₙ, x) \ll c\), then \(\{xₙ\}\) is said to be convergent and \(\{xₙ\}\) converges to x.

E. Lemma 1.7.
Let (X, d) be a cone metric space and P be a normal cone with normal constant M. Let \(\{xₙ\}_{n ≥ 1}\) in X converges to x if and only if
\[d(xₙ, x) \to 0 \text{ as } (n \to \infty). \]

F. Definition 1.8
Let (X, d) be a cone metric space, \{xₙ\} be a sequence in X. If for every \(c \in E\) with \(0 \ll c\), there is \(n₀\) such that for all \(n, m > n₀\),
\[d(xₙ, xₚ) \ll c. \]

Then \(\{xₙ\}\) is called a Cauchy sequence in X.

G. Definition 1.9.
Let (X, d) be a cone metric space. If every Cauchy sequence is convergent in X, then X is called a complete cone metric space.

H. Lemma 1.10
Let (X, d) be a cone metric space and P a normal cone with normal constant M. If a sequence \(\{xₙ\}\) converges to x, then \(\{xₙ\}\) is a Cauchy sequence in X.

I. Lemma 1.11.
Let (X, d) be a cone metric space and P a normal cone with normal constant M. Let \(\{xₙ\}_{n ≥ 1}\) is a Cauchy sequence if and only if
\[d(xₙ, xₚ) \to 0 (n, m \to \infty) \]

J. Lemma 1.12
Let (X, d) be a cone metric space and P a normal cone with normal constant M. Let \(\{xₙ\}\) and \(\{yₙ\}\) be two sequences in X and \(xₙ \to x, yₙ \to y\) then \(d(xₙ, yₙ) \to d(x, y) (n \to \infty)\)

II. A GLIMPSE OF INTEGRAL TYPE CONTRACTION MAPPINGS IN CONE METRIC SPACES

In this section we recall the concept of integral with respect to cone.

A. Definition 2.1.
Let E be the real Banach space and P, a normal cone in E.
Let a, b ∈ E and a < b. Let us define
\[[a, b] = \{ x ∈ E : x = tb + (1-t)a, \text{ for some } t ∈ [0, 1]\}, \]
\[[a, b) = \{ x ∈ E : x = tb + (1-t)a, \text{ for some } t ∈ (0, 1]\}. \]

B. Definition 2.2.
The set \(\{a = x₀, x₁, x₂, ..., xₙ = b\}\) is called a partition for \([a, b]\) if and only if the sets
\([xᵢ₋₁, xᵢ]\) are pair wise disjoint and
\[[a, b] = \bigcup_{i=1}^{n} [xᵢ₋₁, xᵢ] \bigcup \{b\}. \]

C. Definition 2.3.
For each partition Q of \([a, b]\) and each increasing function \(φ : [a, b] \to P\), let us define cone lower summation as
\[l^{Q, n}_{n}(φ, Q) = \sum_{i=0}^{n-1} φ(xᵢ) \parallel xᵢ - xᵢ₊₁ \parallel. \]
D. Definition 2.4.
For each partition Q of \([a, b]\) and each increasing function \(\varphi : [a, b] \to P\), let us define cone upper summation as
\[
U_n^\text{con}(\varphi, Q) = \sum_{i=1}^{n} \varphi(x_{i+1}) \| x_i - x_{i+1} \|.
\]

E. Definition 2.5
Suppose that \(P\) is a normal cone in \(E\). A function \(\varphi : [a, b] \to P\) is called an integrable function on \([a, b]\) with respect to cone \(P\) if and only if for all partition \(Q\) of \([a, b]\),
\[
\lim_{n \to \infty} L_n^\text{con}(\varphi, Q) = S^\text{con} = \lim_{n \to \infty} U_n^\text{con}(\varphi, Q),
\]
where \(S^\text{con}\) is unique and is represented by \(S^\text{con} = \int_a^b \varphi(x) d_P(x)\) or simply \(S^\text{con} = \int_a^b \varphi d_P\).

F. Lemma 2.6.
Let \(f \in L^1(X, P)\). If \([a, b] \subset [a, c]\), then \(\int_a^b f \, d_P \leq \int_a^c f \, d_P\).

G. Lemma 2.7.
Let \(f, g \in L^1(X, P)\) and \(\alpha, \beta \in \mathbb{R}\), then \(\int_a^b (\alpha f + \beta g) \, d_P = \alpha \int_a^b f \, d_P + \beta \int_a^b g \, d_P\).

H. Definition 2.8.
The function \(\varphi : P \to E\) is called subadditive cone integrable function if only if for all \(a, b \in P\),
\[
\int_0^{a+b} \varphi \, d_P \leq \int_0^a \varphi \, d_P + \int_0^b \varphi \, d_P.
\]

I. Theorem 2.9.
Let \((X, d)\) be a complete metric space, \(\alpha \in (0, 1)\) and \(f : X \to X\) is a mapping such that for all \(x, y \in X\),
\[
\int_0^{d(x, y)} \varphi(t) \, dt \leq \alpha \int_0^{d(x, y)} \varphi(t) \, dt, \quad \text{where } \varphi : [0, +\infty) \to [0, +\infty) \text{ is non-negative and summable on each compact subset of } [0, +\infty) \text{ such that for each } \\
\varepsilon > 0, \int_0^{\varepsilon} \varphi(t) \, dt > 0, \text{ then } f \text{ has a unique fixed point } a \in X, \text{ such that for each } x \in X, \quad \lim_{n \to \infty} f^n x = a.
\]

III. MAIN RESULT

A. Theorem 3.1.
Let \((X, d)\) be a complete cone metric space and \(P\) be a normal cone. Suppose that \(\varphi : P \to P\) is a non vanishing mapping and a sub additive cone integrable on each \([a, b] \subset P\) such that
\[
\text{for each } \varepsilon > 0, \int_0^{\varepsilon} \varphi \, d_P > 0 \quad (1)
\]
If \(f : X \to X\) is a mapping such that for all \(x, y \in X\),
\[
\int_0^{d(x, y)} \varphi(t) \, dt \leq \alpha \int_0^{u(x, y)} \varphi \, d_P, \quad \text{where } u(x, y) = \max\{d(x, y), d(x, f(x)), d(y, f(y)), \frac{d(x, f(x))}{2}, \frac{d(y, f(y))}{2}\} \text{ for some } \alpha \in (0, 1).\text{Then } f \text{ has a unique fixed point in } X.
\]
Proof:
Let \(x_1 \in X\). Choose \(x_{n+1} = f(x_n)\). Then
\[
\int_0^{d(x_1, x_2)} \varphi \, d_P = \int_0^{d(x_1, x_2)} \varphi \, d_P \leq \alpha \int_0^{d(x_1, x_2)} \varphi \, d_P, \quad \text{where}
\]
\[
u(x_1, x_2) = \max\{d(x_1, x_2), d(x_1, f(x_1)) = \max\{d(x_1, x_2), \frac{d(x_1, f(x_1))}{2}, \frac{d(x_1, f(x_1))}{2}\}
\]
But,
\[
d(x_1, x_2) \leq \frac{d(x_1, x_2) + d(x_2, x_1)}{2} \leq \max\{d(x_1, x_2), d(x_2, x_1)\}, \quad \text{for some } \alpha \in (0, 1).\text{Then } f \text{ has a unique fixed point in } X.
\]
From the equation (2)
\[
\int_0^{d(x_1, x_2)} \varphi \, d_P \leq \alpha \int_0^{d(x_1, x_2)} \varphi \, d_P = \alpha \max\{\int_0^{d(x_1, x_2)} \varphi \, d_P, \int_0^{d(x_2, x_1)} \varphi \, d_P\} = \alpha^2 \int_0^{d(x_1, x_2)} \varphi \, d_P \leq \alpha^2 \int_0^{d(x_1, x_2)} \varphi \, d_P.
\]
Since \(\alpha \in (0, 1) \), it follows that
\[
\lim_{n \to \infty} \int_0^{d(x_n, x_{n+1})} \varphi \, dp = 0.
\]
If \(\lim_{n \to \infty} d(x_n, x_{n+1}) \neq 0 \), then \(\lim_{n \to \infty} \int_0^{d(x_n, x_{n+1})} \varphi \, dp \neq 0 \).
This is a contradiction.
Hence
\[
\lim_{n \to \infty} d(x_n, x_{n+1}) = 0.
\]
We now show that \(\{x_n\} \) is a Cauchy sequence in \(X \). That is,
\[
\lim_{m,n \to \infty} d(x_m, x_n) = 0.
\]
By Triangle inequality, for \(n > m \)
\[
\int_0^{d(x_n, x_m)} \varphi \, dp = \int_0^{d(x_{n+1}, x_m)} \varphi \, dp
\]
\[
\leq \int_0^{d(x_{n+1}, x_n) + d(x_n, x_{n+1}) + \cdots + d(x_{m+1}, x_m)} \varphi \, dp
\]
\[
\leq \int_0^{d(x_{n+1}, x_n)} \varphi \, dp + \int_0^{d(x_n, x_{n+1})} \varphi \, dp + \int_0^{d(x_n, x_{n-1})} \varphi \, dp + \cdots + \int_0^{d(x_{m+1}, x_m)} \varphi \, dp
\]
\[
\leq \left(1 + \alpha + \cdots + \alpha^{n-1}\right) \int_0^{d(x_1, x_2)} \varphi \, dp
\]
\[
= \alpha \left(1 - \alpha^{n-1}\right) \int_0^{d(x_1, x_2)} \varphi \, dp
\]
\[
= \frac{1}{1 - \alpha} \int_0^{d(x_1, x_2)} \varphi \, dp.
\]
As \(n, m \to \infty \) and \(\alpha \in (0, 1) \), we have
\[
\lim_{m,n \to \infty} d(x_n, x_m) = 0.
\]
This means that \(\{x_n\} \) is a Cauchy sequence in \(X \) and since \(X \) is a complete cone metric space, \(\{x_n\} \) converges to some \(x_0 \in X \).
Finally
\[
\int_0^{d(x_{n+1}, x_0)} \varphi \, dp = \int_0^{d(x_{n+1}, f(x_n))} \varphi \, dp
\]
\[
\leq \alpha \int_0^{u(x_n, x_0)} \varphi \, dp,
\]
where
\[
u(x_0, x_0) = \max \{d(x_0, x_0), d(x_0, f(x_0)), d(x_0, x_0), \frac{d(x_0, f(x_0))}{2}, \frac{d(x_0, x_0)}{2}\}.
\]
Thus
\[
\lim_{n \to \infty} \int_0^{d(x_{n+1}, x_0)} \varphi \, dp = 0.
\]
That is,
\[
\lim_{n \to \infty} d(x_{n+1}, x_0) = 0.
\]
By the uniqueness of the limit of a sequence, \(f(x_0) = x_0 \).
This means that \(x_0 \) is a fixed point of \(f \) in \(X \).
Uniqueness:
If \(x_0, y_0 \) are any two distinct fixed points of \(f \), then
\[
\int_0^{d(x_0, y_0)} \varphi \, dp = \int_0^{d(x_0, y_0)} \varphi \, dp
\]
\[
\leq \alpha \int_0^{u(x_0, y_0)} \varphi \, dp
\]
where
\[
u(x_0, y_0) = \max \{d(x_0, y_0), d(x_0, y_0), d(y_0, y_0), \frac{d(x_0, y_0)}{2}, \frac{d(y_0, y_0)}{2}\}
\]
\[
= d(x_0, y_0).
\]
Thus
\[
\int_0^{d(x_0, y_0)} \varphi \, dp \leq \alpha \int_0^{d(x_0, y_0)} \varphi \, dp.
\]
This implies that
\[
\int_0^{d(x_0, y_0)} \varphi \, dp = 0.
\]
from the equation (1),
\[
d(x_0, y_0) = 0
\]
Therefore \(x_0 = y_0 \). Thus \(f \) has a unique fixed point \(x_0 \in X \).

B. Theorem 3.2

Let \((X, d) \) be a complete cone metric space and \(P \) be a normal cone with normal constant \(M \). Suppose that \(\varphi : P \to P \) is a non vanishing mapping and a subadditive cone integrable on each \([a, b] \subset P \) such that for each \(\varepsilon > 0 \), \(\int_0^\varepsilon \varphi \, dp > 0 \). If \(f : X \to X \) is a mapping such that for all \(x, y \in X \),
\[\int_0^d(fxy) \varphi \, dp \leq a_1 \int_0^d(xy) \varphi \, dp + a_2 \int_0^d(fx) \varphi \, dp + a_3 \int_0^d(yf) \varphi \, dp + a_4 \int_0^d(fy) \varphi \, dp + a_5 \int_0^d(dy) \varphi \, dp \]

where \(a_1, a_2, a_3, a_4, a_5 \in (0, 1) \) such that \(a_1 + a_2 + a_3 + a_4 + a_5 < 1 \), then \(f \) has a unique fixed point in \(X \).

Proof:
Let \(x_1 \in X \). Choose \(x_{n+1} = f(x_n) \).

If \(d(x_n, x_{n-1}) \varphi \, dp \)

\[\leq a_1 \int_0^d(x_{n-1}x_n) \varphi \, dp + a_2 \int_0^d(x_nfx_n) \varphi \, dp + a_3 \int_0^d(x_{n-1}fx_{n-1}) \varphi \, dp + a_4 \int_0^d(x_{n-1}fx_{n-1}) \varphi \, dp + a_5 \int_0^d(x_{n-1}fx_{n-1}) \varphi \, dp \]

\[= a_1 \int_0^d(x_{n-1}x_n) \varphi \, dp + a_2 \int_0^d(x_nfx_n) \varphi \, dp + a_3 \int_0^d(x_{n-1}fx_{n-1}) \varphi \, dp + a_4 \int_0^d(x_{n-1}fx_{n-1}) \varphi \, dp + a_5 \int_0^d(x_{n-1}fx_{n-1}) \varphi \, dp \]

\[\leq (a_1 + a_2) \int_0^d(x_{n-1}x_n) \varphi \, dp + a_2 \int_0^d(x_nfx_n) \varphi \, dp + a_3 \int_0^d(x_{n-1}fx_{n-1}) \varphi \, dp + a_4 \int_0^d(x_{n-1}fx_{n-1}) \varphi \, dp + a_5 \int_0^d(x_{n-1}fx_{n-1}) \varphi \, dp \]

\[\int_0^d(x_{n+1}x_n) \varphi \, dp \leq \frac{a_1 + a_2 + a_5}{1 - a_2 - a_5} \int_0^d(x_{n-1}x_n) \varphi \, dp \]

\[\int_0^d(x_{n+1}x_n) \varphi \, dp \leq h \int_0^d(x_{n-1}x_n) \varphi \, dp, \text{ where } h = \frac{a_1 + a_3 + a_5}{1 - a_2 - a_5} \]

\[\leq h^2 \int_0^d(x_{n-1}x_{n-2}) \varphi \, dp \]

\[\vdots \]

\[\leq h^{n-1} \int_0^d(x_2x_1) \varphi \, dp \]

For \(n > m \), by triangular inequality,

\[\int_0^d(fnxm) \varphi \, dp \leq \int_0^d(fnfxn-1) + d(fnfxn-1+fnxn-2) + \cdots + d(fnxm-fnxm) \varphi \, dp \]

\[\leq \int_0^d(x_{n+1}x_n) \varphi \, dp + \ldots + \int_0^d(x_{m+2}x_{m+1}) \varphi \, dp \]

\[\leq (\alpha^{n-1} + \cdots + \alpha^m) \int_0^d(x_2x_1) \varphi \, dp \]

\[= \alpha^{m-1} \cdots + \alpha \int_0^d(x_2x_1) \varphi \, dp \]

\[= \alpha^{m-1} \cdots + \alpha \int_0^d(x_2x_1) \varphi \, dp \]

\[\leq \alpha m \int_0^d(x_2x_1) \varphi \, dp \]

Since \(\alpha < 1 \),

\[\lim_{m \to \infty} \int_0^d(fnfxm) \varphi \, dp = 0. \]

Then

\[\lim_{m \to \infty} \int_0^d(fnfxm) \varphi \, dp = 0. \]

This implies \(\{x_n\} \) is a Cauchy sequence in and since \(X \) is a complete cone metric space, \(\{x_n\} \) converges to some \(x_0 \in X \).

Finally,

\[\int_0^d(x_{n+1}x_0) \varphi \, dp \leq \int_0^d(x_nfx_0) \varphi \, dp \]

\[\leq a_1 \int_0^d(x_nx_0) \varphi \, dp + a_2 \int_0^d(x_nfx_0) \varphi \, dp + a_3 \int_0^d(x_0fx_0) \varphi \, dp + a_4 \int_0^d(x_0fx_0) \varphi \, dp + a_5 \int_0^d(x_0fx_0) \varphi \, dp \]

\[\leq a_1 \int_0^d(x_nx_0) \varphi \, dp + a_2 \int_0^d(x_nfx_0) \varphi \, dp + a_3 \int_0^d(x_{n+1}x_0) \varphi \, dp + a_4 \int_0^d(x_0fx_0) \varphi \, dp + a_5 \int_0^d(x_0fx_0) \varphi \, dp \]

as \(n \to \infty \), we have,

\[\lim_{n \to \infty} \int_0^d(x_{n+1}x_0) \varphi \, dp \leq \lim_{n \to \infty} a_4 \int_0^d(x_nfx_0) \varphi \, dp \]

This implies

\[\lim_{n \to \infty} \int_0^d(x_{n+1}x_0) \varphi \, dp = 0. \]

Thus

\[\lim_0^d x_{n+1}x_0 = 0. \]

From the uniqueness of limit point \(f(x_0) = x_0 \), which is a fixed point of \(f \).

Uniqueness:
Suppose \(y_0 \) is another fixed point of \(f \) such that \(f(y_0) = y_0 \).

\[\int_0^d(x_0y_0) \varphi \, dp = \int_0^d(fx_0y_0) \varphi \, dp \]
\[
\begin{align*}
\int_0^d(x_0, y_0) \varphi \, dp & \leq a_1 \int_0^d(x_0, f(x_0)) \varphi \, dp + a_2 \int_0^d(x_0, f(x_0)) \varphi \, dp + a_3 \int_0^d(y_0, f(y_0)) \varphi \, dp \\
& + a_4 \int_0^d(x_0, y_0) \varphi \, dp + a_5 \int_0^d(x_0, y_0) \varphi \, dp \\
& = a_1 \int_0^d(x_0, x_0) \varphi \, dp + a_2 \int_0^d(x_0, y_0) \varphi \, dp + a_3 \int_0^d(y_0, y_0) \varphi \, dp \\
& = (a_1 + a_2 + a_3) \int_0^d(x_0, y_0) \varphi \, dp
\end{align*}
\]
That is,
\[
\int_0^d(x_0, y_0) \varphi \, dp \leq (a_1 + a_2 + a_3) \int_0^d(x_0, y_0) \varphi \, dp
\]
Thus, from the equation (1),
\[
\int_0^d(x_0, y_0) \varphi \, dp = 0
\]
Therefore \(d(x_0, y_0) = 0\) and hence \(x_0 = y_0\). Thus, \(f\) has a unique fixed point \(x_0\) in \(X\).

REFERENCES