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Abstract 

 

Data Mining refers to the process of mining useful data over large datasets. The discovery of interesting association relationships 

among large amounts of business transactions is currently vital for making appropriate business decisions. This is the reason that 

the research in data mining is carried out largely for business decision making rather than for academic importance. Association 

rule analysis is the task of discovering association rules that occur frequently in a given transaction data set. Its task is to find 

certain relationships among a set of data (itemset) in the database. It has two measurements: Support and confidence values. 

Confidence value is a measure of rule’s strength, while support value corresponds to statistical significance. There are currently a 

variety of algorithms to discover association rules. Most of the algorithms need a specification of minimum support value as user 

input. Specifying minimum support values of items is not recommended as it leads to very less or very large rules. With a 

sufficiently high support value, the less frequent elements gets eliminated, leaving only the elements which are most frequent. 

Thus, knives and spoons may get eliminated leaving only biscuits and milk. One approach for this problem is proposed by 

MsApriori Algorithm. However, both Apriori and MsApriori are computationally complex and need large computational time 

for large datasets over traditional machines. One solution to this problem is proposed by Dynamic Matrix Apriori which is much 

faster as compared to traditional Apriori in the generation of candidate sets. The contribution of this paper is twofold. It first 

proposed a method to use MsAprioiri using Dynamix Matrix Technique. It then proposes a framework to use the Algorithm 

under the Map Reduce Programming model. Experiments on large set of data bases have been conducted to validate the 

proposed framework. The achieved results show that there is a remarkable improvement in the overall performance of the system 

in terms of run time, the number of generated rules, and number of frequent items used.     
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_______________________________________________________________________________________________________ 

I. INTRODUCTION 

Large quantity of data have been collected in the course of day-to-day management in business, administration, sports, banking, 

the delivery of social and health services, environmental protection, security, politics and endless ventures of modern society. 

Such data is often used for accounting and for management of the customer base. Typically, management data sets are sizable, 

exponentially growing and contain a large number of complex features. While these data sets reflect properties of the managed 

subjects and relations, and are thus potentially of some use to their owner, they generally have relatively low information density, 

in the context of association rule mining. Robust, simple and computationally efficient tools are required to extract information 

from such data sets. The development and understanding of such tools forms the core of data mining. These tools utilizes the 

ideas from computer science, mathematics and statistics. 

 The introduction of association rule mining in 1993 by Agrawal, Imielinski and Swami [1]  and, in particular, the development 

of an efficient algorithm by Agrawal and Srikant [2] and by Mannila, Toivonen and Verkamo [3] marked a shift of the focus in 

the young discipline of data mining onto rules and data bases. Consequently, besides involving the traditional statistical and 

machine learning community, data mining now attracted researchers with a variety of skills ranging from computer science, 

mathematics, science, to business and administration. The urgent need for computational tools to extract information from data 

bases and for manpower to apply these tools has allowed a diverse community to settle in this new area. The data analysis aspect 

of data mining is more exploratory than in statistics and consequently, the mathematical roots of probability are somewhat less 

prominent in data mining than in statistics. Computationally, however, data mining frequently requires the solution of large and 

complex search and optimization problems [4] and it is here where mathematical methods can assist most. This is particularly the 
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case for association rule mining which requires searching large data bases for complex rules. Mathematical modeling is required 

in order to generalize the original techniques used in market basket analysis to a wide variety of applications. Mathematical 

analysis provides insights into the performance of the algorithms. An association rule is an implication or if-then-rule which is 

supported by data. The motivation given in [5] for the development of association rules is market basket analysis which deals 

with the contents of point-of-sale transactions of large retailers. A typical association rule resulting from such a study could be 

"90 percent of all customers who buy bread and butter also buy milk". Insights into customer behavior may also be obtained 

through customer surveys, but the analysis of the transactional data has the advantage of being much cheaper and covering all 

current customers. Compared to customer surveys, the analysis of transactional data does have some severe limitations, however. 

For example, point-of-sale data typically does not contain any information about personal interests, age and occupation of 

customers. Nonetheless, market basket analysis can provide new insights into customer behavior and has led to higher profits 

through better customer relations, customer retention, better product placements, product development and fraud detection. 

Market basket analysis is not limited to retail shopping but has also been applied in other business areas including: 

1) Credit card transactions, 

2) Telecommunication service purchases, 

3) Banking services, 

4) Insurance claims, and 

5) Medical patient histories. 

6) Economy, Stock Predictors 

 Association rule mining generalizes market basket analysis and is used in many other areas including genomics, text data 

analysis and Internet intrusion detection. For motivation, the focus is given on retail market basket analysis in this paper. When a 

customer passes through a point of sale, the contents of his market basket are registered. This results in large collections of 

market basket data which provide information about which items were sold and, in particular, which combinations of items were 

sold.  

 Association rule mining [1,2] is one of the most important and well-researched techniques of data mining, that aims to induce 

associations among sets of items in transaction databases or other data repositories. Currently, Apriori algorithms [1,2,6] play a 

major role in identifying frequent item set and deriving rule sets out of it. Apriori algorithm is the classic algorithm of association 

rules, which enumerate all of the frequent item sets. When this algorithm encountered dense data due to the large number of long 

patterns emerge, this algorithm's performance declined dramatically. In order to find more valuable rules, this paper proposes an 

improved algorithm of association rules over the classical Apriori algorithm. The improved algorithm is verified, the results 

show that the improved algorithm is reasonable and effective, can extract more value information. 

 Problem Statement A.

Association rule analysis is the task of discovering association rules that occur frequently in a given transaction data set. Its task 

is to find certain relationships among a set of data (itemset) in the database. It has two measurements: Support and confidence 

values [1, 2]. Confidence value is a measure of rule’s strength, while support value is of statistical significance. Traditional 

association rule mining techniques employ predefined support and confidence values. However, specifying minimum support 

value of the mined rules in advance often leads to either too many or too few rules, which negatively impacts the performance of 

the overall system. In this paper, it is proposed to replace the Apriori’s user-defined minimum support threshold with a more 

meaningful aggregate function based on empirical analysis of the database. Also, Classical Apriori Algorithm is inefficient in 

finding out association rules as the number of database operations is huge and every time the database is updated, the mining of 

association rules is to be performed from a fresh start. To overcome the issue of rescanning the database, Matrix Apriori 

algorithm [7] was proposed in which matrices MFI and STE are prepared to mine association rules. Matrix Apriori gives great 

performance improvement over classical Apriori. Further, to manage for the dynamic nature of transactional databases, dynamic 

matrix Apriori algorithm was proposed which manages the dynamic nature of the databases without recreation of the MFI and 

STE matrices. Although no provision was provided for accounting the custom defined support values for the datasets. This paper 

focuses on the issue of setting up custom support values over Dynamic Matrix Apriori algorithm for efficient association rule 

mining. It also proposes a framework for using MapReduce [8] technique in multiple node Cluster based environments so as to 

reduce time complexity for mining of association rules over bigdata. 

 Motivation B.

Association rule mining has become a popular research area due to its applicability in various fields such as market analysis, 

forecasting and fraud detection. Given a market basket dataset, association rule mining discovers all association rules such as “A 

customer who buys item X, also buys item Y at the same time”. These rules are displayed in the form of X → Y where X and Y 

are sets of items that belong to a transactional database. Support of association rule X → Y is the percentage of transactions in 

the database that contain X U Y . Association rule mining aims to discover interesting relationships and patterns among items in 

a database. It has two steps; finding all frequent itemsets and generating association rules from the itemsets discovered. Itemset 

denotes a set of items and frequent itemset refers to an itemset whose support value is more than the threshold described as the 

minimum support. Since the second step of the association rule mining is straightforward, the general performance of an 

algorithm for mining association rules is determined by the first step. Therefore, association rule mining algorithms commonly 
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concentrate on finding frequent itemsets. For this reason, in most of the literature, “association rule mining algorithm” and 

“frequent itemset mining algorithm” terms are used interchangeably. Apriori and FP-Growth [9] are known to be the two 

important algorithms each having different approaches in finding frequent itemsets. The Apriori Algorithm uses Apriori Property 

in order to improve the efficiency of the level-wise generation of frequent itemsets. On the other hand, the drawbacks of the 

algorithm are candidate generation and multiple database scans. FP-Growth comes with an approach that creates signatures of 

transactions on a tree structure to eliminate the need of database scans and outperforms compared to Apriori. A recent algorithm 

called Matrix Apriori [7] which combines the advantages of Apriori and FP Growth was proposed. The algorithm eliminates the 

need of multiple database scans by creating signatures of itemsets in the form of a matrix. The algorithm provides a better overall 

performance than FP-Growth. Although all of these algorithms handle the problem of association rule mining, they ignore the 

mining for infrequent items as all these techniques employs user specified minimum support. Although, work on multiple 

minimum support has been carried out in recent years, no existing techniques addresses the issue of implementing multiple 

minimum support [10,11,12] over matrix Apriori algorithm.  

 The user specified support values are generally not optimal and a common minimum-support value cannot be assigned to all 

the items. Thus, there is a critical need to develop techniques so as to compensate for this issue.  

 This paper is orgranized as follows. Section 2 gives the objectives and research approach used in the paper. Section 3 

discusses Matrix Apriori Algorithm and the techniques for evaluation of itemset classes for custom specified support values. It 

also presents the techniques through which the custom support values can be inculcated in matrix Apriori algorithm. It also 

proposes technique to use the MapReduce framework for mining of association rules. Section 4 shows the test results and the 

performance evaluations. The section begins with an illustration of walmart transaction database. Custom values are evaluated 

for datasets and association rules are mined. Also, 1, 2 and 3 frequent itemsets are mined based on the support values and the 

matrix apriori algorithm using MapReduce. Section 5 is the conclusion section. A summary of the paper and suggestions for 

future research are stated. 

II. RESEARCH APPROACH 

The objective of this paper is to provide a mechanism for user defined support values for various classes of data items for 

effective mining of association rules and at the same time, provide mechanism so that such technique can be inculcated into 

matrix Apriori technique so that multiple scans of database can be avoided and association rules corresponding to infrequent 

items can be accounted. It also aimed at the implementation of the proposed Dynamic Matrix MsApriori using the MapReduce 

framework so that the proposed algorithm can be executed in cluster based environments to mine association rules in real time on 

operational bigdata. 

 For each item of the item universe, the support value is evaluated using entire thorough scan of the database. The range of 

values of support of different items is tabulated in ascending order, thereby, providing a closed interval in which these support 

values lies. This range of support values is very large for most general market basket databases. The support values are 

maximum for everyday consumables like bread and butter and in contrast, very low for items such as food processor or 

television. Thus a common minimum specified support value cannot be assigned to all the items for association rule mining. One 

approach is to make classes of items belonging to specific range of support values over entire range of support values. Another 

approach is to provide custom specified minimum support values to be assigned to each item based on the average values of the 

support and the probability distribution of infrequent items. The derived Minimum Item Support (MIS) can be used in matrix 

apriori algorithm for generation of MFI and STE matrices. Also, techniques are provided so that these custom specified support 

values can be used with Matrix Apriori algorithm. A method is then proposed to inculcated dynamicity into the technique so that 

new transactions can be added into the existing transaction matrix and results can be mined. It then propose an architecture to use 

MapReduce for creation of MFI and STE for mining of Association rules over a cluster based system using the <key, value> 

pairs and the corresponding reduce operation. 

III.  PROPOSED WORK 

 Msapriori: Apriori With Multiple Minimum Support A.

Mining association rules with multiple minimum supports is an important generalization of the association-rule-mining, which 

was proposed by Liu et al. This generalization is named as Multiple Support Apriori or MsApriori. The implementation of 

MsApriori is straightforward except that it requires a large number of iteration as compared to standard Apriori.  

The MsApriori algorithm can find rare item rules without producing a huge number of meaningless rules. Each item in the 

database can have its minimum support value called minsup, which is expressed in terms of minimum item support (MIS). Users 

can specify different MIS values for different items. By assigning different MIS values to different items, one can reflect the 

natures of the items and their varied frequencies in the database. 

 Let I={a1, a2,..., am} be a set of items and MIS(ai) denote the MIS value of item ai. Then the MIS value of itemset A={a1, a2,..., 

ak} (1≤k≤m) is equal to 

min [MIS(a1), MIS(a2).... MIS(ak)] 

 Consider the following items in a database, bread, shoes and clothes. The user-specified MIS values are as follows: 

MIS(bread) = 2%,  MIS(shoes) = 0.1%,  MIS(clothes) = 0.2%. If the support of itemset{clothes, bread} is 0.15%, then 
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itemset{clothes, bread} is infrequent because the MIS value of itemset{clothes, bread} is equal to min[MIS(clothes), 

MIS(bread)]=0.2%, which is larger than 0.15%. 

 Matrix Apriori Algorithm B.

The Matrix Apriori Algorithm is a frequent itemset mining algorithm that combines the advantages of both Apriori and FP-

Growth algorithms. Resembling Apriori, algorithm Matrix Apriori consists of two steps. First, discover frequent patterns, and 

second, generate association rules from the discovered patterns. The first step determines the performance of the algorithm. 

 Let L = {i1, i2, …, im} be a set of items, D be a repository containing a set of transactions, δ a minimal support predefined by 

the user, T a transaction, where each transaction T ⊆ L. Algorithm Matrix Apriori employs two simple structures for generating 

frequent patterns: a matrix called MFI (matrix of frequent items) which holds the set of frequent items identified during the first 

traversal of repository D, and a vector called STE which stores the support of candidate sets. Frequent items will be represented 

by columns of MFI, however, they could also be represented by rows. The total number of frequent items is stored in variable 

NFI and the total number of candidate sets NCS. 

 Initially the database is scanned in order to determine frequent items. These items are sorted in a descending support count and 

trimmed to those that are above the minimum support value to create the frequent items list. The sorted frequent items list is the 

basis for the order of columns of the MFI. Subsequently, in the second scan, MFI and STE are built. The first row of the MFI is 

left empty. This row will be updated later in the modification. Therefore, inserting rows to MFI begins after this empty row. For 

each new transaction in the database, a row of zeros and ones is inserted according to the following rule. The row is constructed 

by using the order in the frequent items list. For each item in the list, either “1” or “0” is added to the column of the row if the 

transaction contains the item or not. If the transaction is already included in the MFI, then it is not stored again in a new row, but 

its STE is incremented by “1”. 

Consider the following illustration for Matrix Apriori algorithm: 
Table - 3.1 

Hypothetical Data of Transactions 

Transaction Id ITEM SET 

001 Coffee, dish-wash, eggs, gum, honey, ice-cream, ketchup, pasta 

002 bread, eggs, flour, honey, ice-cream, pasta 

003 coffee, eggs 

004 Aluminum-foil, bread, Coffee, dish-wash, flour, honey, pasta 

005 Aluminum-foil, bread, coffee, dish-wash, eggs, flour, gum, ice-cream, pasta 

006 bread, eggs, flour, gum, honey, ice-cream, pasta 

007 Aluminum-foil, bread, coffee, dish-wash, eggs, pasta 

008 Aluminum-foil, Coffee, dish-wash, eggs, flour, honey, ice-cream, pasta 

009 Aluminum-foil, Coffee, dish-wash, eggs, ketchup, pasta 

0010 Aluminum-foil, Coffee, dish-wash, eggs, flour, ice-cream, pasta 

 As specified earlier, the support count of an element is the number of times it appears in all the transactions. The tabulation of 

the support values of various items is shown in table 3.2. 
Table - 3.2 

Item Support Count 

Item Support 

Aluminum-foil 6 

Bread 5 

Coffee 8 

Dish-wash 7 

Eggs 9 

Flour 6 

Gum 3 

Honey 5 

Ice-cream 6 

Ketchup 2 

Pasta 9 

 Let the minimum support value be 6, then 1- Frequent itemset list is the list of all the elements having the support values 

greater than or equal to 6. Table 3.3 lists frequent items sorted according to the list of frequency and eliminating those with less 

than minimum support. 

Table - 3.3 

Sorted List of Frequent Items with Minimum Support 
Item Support 

Eggs 9 

Pasta 9 



Improving the Performance of MS-Apriori Algorithm using Dynamic Matrix Technique and Map-Reduce Framework  
(IJIRST/ Volume 2 / Issue 05/ 023) 

 

 
All rights reserved by www.ijirst.org 147 

Coffee 8 

Dish-wash 7 

Aluminum-foil 6 

Flour 6 

Ice-cream 6 

Bread 5 

Honey 5 

Gum 3 

Ketchup 2 

 The shaded items are the items which have support values less than the minimum specified support. These elements are to be 

eliminated from further analysis 

 It is important to note at this point that if the support values are used specified, as in the case of MsApriori, then the list of 1 

frequent itemsets is to be prepared accordingly. The number of frequent items is stored in variable NFI; in this example, the 

number of frequent items is 7. 

 Table 3.4 lists the transaction id and transactions sorted by the order of support and elimination those elements which have 

less than the minimum support. 
Table - 3.4 

Transaction Lists with Sorted Support 

Transaction Id Sorted Item-Set 

001 Eggs, pasta, coffee, dish-wash, ice-cream 

002 Eggs, pasta, flour, ice-cream 

003 Eggs, coffee 

004 Pasta, coffee, dish-wash, Aluminum-Foil, Flour 

005 Eggs, pasta, coffee, dish-wash, Aluminum-Foil, Flour, ice-cream 

006 Eggs, pasta, flour, ice-cream 

007 Eggs, pasta, Coffee, dish-wash, Aluminum-Foil 

008 Eggs, pasta, Coffee, dish-wash, Aluminum-Foil, Flour, ice-cream. 

009 Eggs, pasta, Coffee, dish-wash, Aluminum-Foil 

010 Eggs, pasta, Coffee, dish-wash, Aluminum-Foil, Flour, ice-cream 

Initially, MFI is prepared by second scan of the entire database.  

 Each column of MFI represents an elements and each row represents a transaction. The columns are assigned to the elements 

in the decreasing order of the support count as specified in table 3.5.  

The binary representation of the transactions in terms of frequent items is shown in table 3.5 
Table - 3.5 

Transactions Represented As Binary Vectors 

Items/ Transaction No. Eggs Pasta Coffee Dish- wash Aluminum-foil Flour Ice-cream 

001 1 1 1 1 0 0 1 

002 1 1 0 0 0 1 1 

003 1 0 1 0 0 0 0 

004 0 1 1 1 1 1 0 

005 1 1 1 1 1 1 1 

006 1 1 0 0 0 1 1 

007 1 1 1 1 1 0 0 

008 1 1 1 1 1 1 1 

009 1 1 1 1 1 0 0 

010 1 1 1 1 1 1 1 

 Each of the row vectors is to be included in MFI as per the Matrix Apriori specification. This is performed as shown in table 

3.5. The first row of MFI is left blank for computations to be performed later. 

 Transactions 1 to 5 are all distinct so added in the MFI as these are in Table 3.5 and Row candidate set is set to 1 for each of 

these transactions. Transaction 6 is identical to 5, so the count of STE for row 5 is incremented by 1. Transaction 7 is then added 

to the matrix in row no. 7. Transaction 8 is identical to transaction 5 so count is STE in row five is again incremented by 1. 

Transaction 9 is identical to transaction 7 so the STE row for 7 is incremented by 1. Transaction 10 is identical to 5 so the row 5 

of STE is again incremented by1. 
 

 

Table - 3.6 

Initial Matrix of Frequent Items (MFI) and STE 
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 The resulting values in matrix MFI and vector STE, after full traversal of repository D, are presented in table 3.6. The fourth 

candidate set (stored in row 5) has support equal to 3, that is, the candidate set is present in three transactions of repository D. 

This value is stored in the fourth position of vector STE. The next procedure to be executed is modified MFI, which begins its 

process in the first row of MFI and has the goal of writing indexes to accelerate the search for frequent patterns. In the first row 

of matrix MFI, the row number are stored where the j-th frequent item appears for the first time. For example, frequent item flour 

appears for the first time in the third row, hence MFI[1, 6] = 3. The value 3 inserted is thus an index, and following it, the row 

number where frequent item flour appears for the second time will be stored in row 3 of the matrix, that is in MFI[3, 6] the 

inserted value will be 5. The next row where flour is found is row 6, so this value is stored in MFI[5, 6]. Finally, element MFI[6, 

6] stores the value 1 to indicate that no more rows contain item flour. Figure 3.6 shows the result obtained after modifying the 

MFI. The reason for insertion in 3, 5 and 6th row in case of element flour being this that these are the nonzero cells in the column 

vector of these columns. 
Table - 3.7 

Modified Matrix of Frequent Items (MFI) and STE 

 
 The last step is to find Frequent Patterns, which takes as input matrix MFI and vector STE as presented in table 3.7. This 

procedure applies the method of growing patterns, basically consisting of combining frequent items, determining the support 

associated to this combination, and comparing the support of a combination with the minimal support to decide whether or not it 

is a frequent pattern. 
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 In the process of searching for frequent patterns, item ice-cream is combined with the frequent items found on its left hand 

side (flour, aluminum-foil, dish-wash, coffee, pasta and eggs). The support for each of the combinations is calculated. For this 

purpose, all the cells of both the vector are analyzed for matching values. The matching values in the columns of both ice-cream 

and flour are 2, 6 and 7. The corresponding values in STE are 1, 5 and 6. This is important here to note that STE vector count is 

one less than the row count in MFI. The summation of the count of these entries in STE table is 1+3+1 = 5 which is the support 

value of this itemset. The support values if the two itemset, of element ice-cream with all other elements is listed in table 3.8 
Table - 3.8 

Combinations Obtained Based On Conditional Pattern i 

Combined Items Support 

flour-icecream 5 

Aluminiumfoil-icecream 3 

dishwash-icecream 4 

Coffee-icecream 4 

pasta-icecream 6 

eggs-icecream 6 

Table 3.9 presents the sorted lists of frequent items having minimum support. 
Table - 3.9 

Combinations Obtained Based On Conditional Pattern i with Minimum Support 

Combined Items Support 

pasta-icecream 6 

eggs-icecream 6 

flour-icecream 5 

dishwash-icecream 4 

Coffee-icecream 4 

Aluminiumfoil-icecream 3 

 If the minimum support considered for any element pair be 6, then only the twp pairs; viz, <pasta, ice-cream> and <eggs, ice-

cream> are considered as frequent pairs whereas the last three in the table, which are shown highlighted are discarded from 

further analysis. 

In the next iteration of the search process, these two combinations will be taken as conditional patterns. 

1) For conditional pattern <pasta, ice-cream>, there is only one item to the, namely item eggs, hence combination <eggs, 

pasta, icecream> with a support of 6, becomes a frequent pattern.  

2) For conditional pattern <eggs, icecream>, no items exist to the left of eggs, therefore no combination can be generated. 

 Once the analysis on item ice-cream has concluded, the process continues with conditional pattern flour. Combinations are 

made with the items situated to the left of flour (aluminium-foil, dish-wash, coffee, pasta and eggs), obtaining the combinations 

with their corresponding support values. 

 Matrix Apriori works without candidate generation, scans database only twice and uses Apriori Property. Also, the 

management of matrix is easy. Also, Matrix Apriori can be tabulated with Multiple support values with slight modifications as 

per the specifications given in section 3.1. 

 Dynamic Matrix Apriori C.

It is impractical to scan database to construct MFI and STE every time the database is updated. Also, the transactional database 

of a typical market basket analysis frequently changes with a number of transactions being added every day. This gives 

motivation for development of techniques to inculcate dynamicity in the matrix apriori algorithm so as to dynamically generate 

association rules based on the overall transactional database under consideration. 

 Dynamic Matrix Apriori Works on the similar lines as the matrix apriori algorithm. When new transactions arrive, they are 

scanned and 1-itemset ordered list of items are updated to include the 'now frequent' items. 

 The new items in the additions are included to the MFI by adding new columns. The MFI is updated as follows: 

 First, the new transaction is checked whether it is existed in the MFI or not. If it exists, its STE is incremented by “1”; if it 

does not exist, it is added to the MFI. Adding to the modified MFI is done by setting the cell value to the row number of 

transaction where the “1” value is stored in the MFI. When the item does not exist in the remaining transactions of the 

incremental database, the cell value is set to “1”. Finally, according to the change of the 1-itemset ordered list of items, the order 

of items in the MFI is changed. Dynamic Matrix Apriori can also be processed for Multiple Minimum Support of the itemsets. 

The same sets of techniques are also applicable to implement Dynamic Matrix MsApriori. 

 MapReduce Framework for Dynamic Matrix MsApriori D.

The MapReduce framework is applicable to Matrix Apriori technique as per the following proposed scheme shown in figure 3.1. 

The implementation platform for MapReduce framework is Hadoop which is considered for execution in single server mode. It 

is important to note that most of the operations of Apriori Algorithm for databases involves counting operation which are most 

suitable to implement using MapReduce Model for multiprocessing environments. In Matrix Apriori Algorithm, there are only 

two database scans followed by matrix operations to mine frequent itemsets. This can be readily implemented in Hadoop as 
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MapReduce implementation. As it is clear that the resultant MFI matrix of real dataset is large, the problem of mining 

association rules from n-frequent itemsets can be solved using MapReduce Framework. 

 
Fig. 3.1: Proposed Framework of Dynamic Matrix MsApriori using MapReduce 

 Setting up of the MFI Matrix 1)

Consider the transaction dataset as specified above with N transactions and I distinct items. Consider a k node cluster with the 

implementation of MapReduce, the key value pair allotment and computation assignment can be done in the form as shown in 

table 3.10. 
Table - 3.10 

Combinations Obtained Based On Conditional Pattern i with Minimum Support 

Node Operation 

#1 
Transactions: First t Transactions 

Elements : First set of items 

#2 
Transactions: Next t transactions 

Elements : First  set of items 

#3 
Transactions: Next t transactions 

Elements : First  set of items 

#k 
Transactions: Next t transactions 

Elements : First  set of items 

 

 Consider the operation done by i
th

 node in the first phase of computation. The i
th

 node operates on the set first of items of the 

unordered item list. Also, the i
th

 node operates on the transaction labeled from (i-1)*t+1 to i*t. 

 For the first set of items, the support values of these items are computer over subsets of transaction by the corresponding 

nodes. Let the time required for processing of specified set of items overt transactions is s and the number of rounds needed for 

entire database to be scanned be r, then the time required for processing of first set of items is s*r.  

The reduce operation on the set can be performed as follows: 
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 The support values of the items at the end of each round is added and stored. The beginning of next round takes a fresh start of 

the item count starting from zero and scans the database transactions which are allotted next. This again followed by subsequent 

addition to the previous list which finally gives the support count of the subset of items considered at the end of the r
th

 round. 

 The process is repeated for the next subset of items and followed until all the items in the list are computed over the entire 

database. If there a p subsets of items, then the time required for scanning of transaction database over the entire set of items is 

s*r*p. 

 The items can then be arranged in the ascending order of support values. The representation of the entire database in terms of 

binary sparse matrix can also be done through assignment over the cluster node in the following way. 

 The item list in the descending order of support values is stored in a vector v and the set of transactions is represented as 

binary vectors of length v. The checking of duplicity within the transaction group computed by a cluster node in any round can 

be done through a flag or key value which stores the count as how many times the vector has been repeated in the set of nodes, 

and increasing the count when the same vector is encounter again, and then skipping it.  

 At the end of the first round all binary vectors are stored as separate subsets of vectors. For k such sets, a total of C(k,2) pairs 

are possible. Taking any two subsets at a time, a cumulative checking of duplicates is performed to remove the duplicates. This 

can be checked parallel by assignment of pairs to cluster nodes, and removing duplicates, while at the same time, increasing the 

count in the lower order set. This can only be done in k rounds in which at the first round, set 1 is checked amongst all other set 

and so on for subsequent rounds. 

 Finally, at the end of these rounds, the transactions are added to MFI matrix and the count are stored in STE array. In the next 

round, the same process is repeated. as duplicates are eliminated and then stored in the MFI matrix. Finally, when the MFI 

matrix is complete, the vector sets representing individual transactions are assigned to cluster nodes in groups for eliminating 

redundancy as a whole using aforementioned techniques and making a corresponding change in STE. 

 Setting up of the Modified MFI Matrix 2)

The modified MFI matrix can be built up by processing the MFI matrix as per the rules to compute modified MFI. However, the 

large size of MFI restricts it from being read as a whole. However, one factor that accounts of its storage in efficient way is this 

MFI is a typical sparse matrix whose most entries are zero. The nonzero entries in the individual columns can be counted and 

modified MFI can be tabulated. 

 The non-zero entry just above the occurrence of 1 in any column corresponding to any element gives the support values of that 

element in the transactions. At this stage, multiple minimum support can be specified by the user and the items no fulfilling the 

minimum support criteria can be eliminated. 

 Computing Frequent Itemsets 3)

The pairing of the item with least support with the other items to the left of it is made by assigning such pairs to the cluster nodes 

till the pairing of the leftmost with all other items is being made. For any particular grouping of the item with the other item, the 

minimum support count of the set is the minimum of the support count of any of the two item. However, the confidence remains 

a universal measure and has to be specified for the computation of association rules. More strong association rules are computed 

with higher values of minimum confidence. 

 Till the computation of two frequent itemsets, the Apriori property is not used. For three of more frequent itemsets, Apriori 

property is used to mine association rules. 

 Section 4 analyzes the execution results on real database of WalMart Megastore and gives the implications. 

IV. ANALYSIS OF PROPOSED WORK 

 Analysis of Transaction Data A.

A part of local grocery store database, is shown below in table 4.1. The complete mysql dump in the form of csv (filename: 

grocery.csv) of the database is included in the CD-ROM enclosed. 
Table - 4.1 

Subset Of Transactions From The Transaction Data Of Grocery Store 

Transaction Item-list (Representative) 

T1 citrus fruit, semi-finished bread, margarine, ready soups 

T2 tropical fruit, yogurt, coffee 

T3 whole milk 

T4 pip fruit, yogurt, cream cheese, meat spreads 

T5 other vegetables, whole milk, condensed milk, long life bakery product 

T6 whole milk, butter, yogurt, rice, abrasive cleaner 

T7 rolls/buns 

T8 other vegetables, UHT-milk, rolls/buns, bottled beer, liquor (appetizer) 

T9 pot plants 
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T10 whole milk, cereals 

T11 tropical fruit, other vegetables, white bread, bottled water, chocolate 

T12 citrus fruit, tropical fruit, whole milk, butter, curd, yogurt, flour 

T13 Beef 

T14 frankfurter, rolls/buns, soda 

T15 chicken, tropical fruit 

T16 butter, sugar, fruit/vegetable juice, newspapers 

T17 fruit/vegetable juice 

T18 packaged fruit/vegetables 

T19 Chocolate 

T20 specialty bar 

T21 other vegetables 

T22 butter milk, pastry 

T23 whole milk 

T24 tropical fruit, cream cheese , processed cheese, detergent, newspapers 

T25 tropical fruit, root vegetables, other vegetables, frozen dessert, rolls/buns, flour, sweet spreads 

T26 bottled water, canned beer 

T27 Yogurt 

T28 sausage, rolls/buns, soda, chocolate 

T29 other vegetables 

T30 brown bread, soda, fruit/vegetable juice, canned beer, newspapers, shopping bags 

 A set of 9,835 records are considered for association rule mining using proposed techniques. The item list and the 

corresponding support values for the transactions are provided in table 4.2 and in figure 4.1. 
Table - 4.2 

Item List and the Support Values 

whole milk 2513 Grapes 220 sauces 54 

other vegetables 1903 chewing gum 207 Jam 53 

rolls/buns 1809 Detergent 189 spices 51 

Soda 1715 red/blush wine 189 curd cheese 50 

Yogurt 1372 white wine 187 cleaner 50 

bottled water 1087 pickled vegetables 176 liver loaf 50 

root vegetables 1072 semi-finished bread 174 male cosmetics 45 

tropical fruit 1032 baking powder 174 Rum 44 

shopping bags 969 Dishes 173 meat spreads 42 

Sausage 924 Flour 171 ketchup 42 

Pastry 875 pot plants 170 brandy 41 

citrus fruit 814 soft cheese 168 light bulbs 41 

bottled beer 792 processed cheese 163 Tea 38 

Newspapers 785 Herbs 160 specialty fat 36 

canned beer 764 canned fish 148 abrasive cleaner 35 

pip fruit 744 Pasta 148 skin care 35 

fruit/vegetable juice 711 seasonal products 140 nuts/prunes 33 

whipped/sour cream 705 cake bar 130 artif. sweetener 32 

brown bread 638 packaged fruit/vegetables 128 canned fruit 32 

domestic eggs 624 Mustard 118 syrup 32 
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Frankfurter 580 frozen fish 115 nut snack 31 

margarine 576 cling film/bags 112 snack products 30 

Coffee 571 spread cheese 110 Fish 29 

Pork 567 Liquor 109 potato products 28 

Butter 545 frozen dessert 106 bathroom cleaner 27 

Curd 524 Salt 106 cookware 27 

Beef 516 canned vegetables 106 soap 26 

Napkins 515 dish cleaner 103 cooking chocolate 25 

Chocolate 488 flower (seeds) 102 pudding powder 23 

frozen vegetables 473 condensed milk 101 tidbits 23 

Chicken 422 roll products 101 cocoa drinks 22 

white bread 414 pet care 93 organic sausage 22 

cream cheese 390 photo/film 91 prosecco 20 

Waffles 378 mayonnaise 90 flower soil/fertilizer 19 

salty snack 372 sweet spreads 89 ready soups 18 

long life bakery product 368 chocolate marshmallow 89 specialty vegetables 17 

Dessert 365 Candles 88 organic products 16 

Sugar 333 specialty cheese 84 honey 15 

UHT-milk 329 dog food 84 decalcifier 15 

hamburger meat 327 frozen potato products 83 cream 13 

Berries 327 house keeping products 82 frozen fruits 12 

hygiene articles 324 Turkey 80 hair spray 11 

Onions 305 Instant food products 79 rubbing alcohol 10 

specialty chocolate 299 liquor (appetizer) 78 liqueur 9 

Candy 294 Rice 75 make up remover 8 

misc. beverages 279 instant coffee 73 salad dressing 8 

frozen meals 279 Popcorn 71 whisky 8 

Oil 276 Zwieback 68 toilet cleaner 7 

butter milk 275 Soups 67 baby cosmetics 6 

specialty bar 269 finished products 64 frozen chicken 6 

Beverages 256 Vinegar 64 bags 4 

Ham 256 female sanitary products 60 kitchen utensil 4 

Meat 254 kitchen towels 59 preservation products 2 

ice cream 246 dental care 57 baby food 1 

hard cheese 241 Cereals 56 sound storage medium 1 

sliced cheese 241 sparkling wine 55   

cat food 229 Softener 54   
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Fig. 4.1: Plot of Support Values of all the items in the transactions listed in the 9835 transaction 

 The binary transition matrix of transaction database consists of a matrix with 9835 rows and 164 columns. The column values 

correspond to the maximum number of items in any of the transaction of the database record. 

 The category information from the products can be obtained by the level information provided in the transactions. For the data 

considered in this analysis, the level information of a subset of data is depicted in table 4.3 
Table - 4.3 

Level Data from Item List 

 
Labels level2 level1 

1 frankfurter Sausage meet and sausage 

2 Sausage sausage meet and sausage 

3 liver loaf sausage meet and sausage 

4 Ham sausage meet and sausage 

5 Meat sausage meet and sausage 

6 finished products sausage meet and sausage 

7 organic sausage sausage meet and sausage 

8 Chicken poultry meet and sausage 

9 Turkey poultry meet and sausage 

10 Pork pork meet and sausage 

11 Beef beef meet and sausage 

12 hamburger meat beef meet and sausage 

13 Fish fish meet and sausage 
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14 citrus fruit fruit fruit and vegetables 

15 tropical fruit fruit fruit and vegetables 

16 pip fruit fruit fruit and vegetables 

17 Grapes fruit fruit and vegetables 

18 Berries fruit fruit and vegetables 

19 nuts/prunes fruit fruit and vegetables 

20 root vegetables vegetables fruit and vegetables 

21 Onions vegetables fruit and vegetables 

22 Herbs vegetables fruit and vegetables 

23 other vegetables vegetables fruit and vegetables 

24 packaged fruit/vegetables packaged fruit/vegetables fruit and vegetables 

25 whole milk dairy produce fresh products 

26 Butter dairy produce fresh products 

27 Curd dairy produce fresh products 

28 Dessert dairy produce fresh products 

29 butter milk dairy produce fresh products 

30 Yogurt dairy produce fresh products 

31 whipped/sour cream dairy produce fresh products 

32 Beverages dairy produce fresh products 

33 UHT-milk shelf-stable dairy fresh products 

34 condensed milk shelf-stable dairy fresh products 

35 Cream shelf-stable dairy fresh products 

Table 4.4 lists all the level-2 which exists in the entire grocery store transaction dataset. 
Table - 4.4 

Levels (Level-2) In the Database Groceries 

1 baby food 29 hard drinks 

2 Bags 30 health food 

3 bakery improver 31 jam/sweet spreads 

4 bathroom cleaner 32 long-life bakery products 

5 Beef 33 meat spreads 

6 Beer 34 non-alc. drinks 

7 bread and backed goods 35 non-food house keeping products 

8 Candy 36 non-food kitchen 

9 canned fish 37 packaged fruit/vegetables 

10 canned fruit/vegetables 38 perfumery 

11 Cheese 39 personal hygiene 

12 chewing gum 40 pet food/care 

13 Chocolate 41 pork 

14 Cleaner 42 poultry 

15 Coffee 43 pudding powder 

16 Condiments 44 sausage 

17 Cosmetics 45 seasonal products 

18 dairy produce 46 shelf-stable dairy 

19 Delicatessen 47 snacks 

20 dental care 48 soap 
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21 detergent/softener 49 soups/sauces 

22 Eggs 50 staple foods 

23 Fish 51 sweetener 

24 frozen foods 52 tea/cocoa drinks 

25 Fruit 53 vegetables 

26 games/books/hobby 54 vinegar/oils 

27 Garden 55 wine 

28 hair care   

Table 4.5 lists all the level-2 which exists in the entire grocery store transaction dataset. 
Table - 4.5 

Levels (Level-1) In the Database Groceries 

S. No. Level 1 / Category 

1 canned food 

2 Detergent 

3 Drinks 

4 fresh products 

5 fruit and vegetables 

6 meet and sausage 

7 non-food 

8 Perfumery 

9 processed food 

10 snacks and candies 

 In total, there are 9835 transaction and 169 different items. Five items, viz; bags, kitchen utensils, preservation products, baby 

food and sound storage medium are excluded from further analysis as these have support values 4,4,2,1 and 1 respectively which 

is below the threshold considered, which is 6. The items in each of the transaction are sorted in the order of descending support 

values. Thereafter, the transaction matrix can be prepared with rows indicating transactions and columns indicating items in the 

order or ascending support count. The second level grouping of items gives 55 groups and the first level grouping gives 10 

groups/categories as shown in table 4.4 and 4.5.  

 The visualization of the sparce transition matrix of the complete grocery store transaction data (9835 rows and 164 columns) is 

shown in figure 4.2. 

 
Fig. 4.2: Visualization of sparse transaction matrix of complete grocery transaction data. 

 The number of association rules generated depends upon the values of support and confidence of the rules. The number of 

rules generated keeping all items separated, by grouping in level 2 groups and by grouping in level 1 group is shown in table 4.6. 
Table - 4.6 

Number Of Rules Generated As Function Of Support Value (Confidence = 0.5) 

SUPPORT R R2 R1 

0.001 5668 1160 144 

0.002 1098 304 54 

0.003 421 142 32 
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0.004 197 75 21 

0.005 120 49 18 

0.006 67 33 13 

0.007 45 20 8 

0.008 30 13 6 

0.009 25 13 6 

0.01 15 9 4 

The visualization of table 4.6 is shown in figure 4.3. 

 
Fig 4.3: Number of Rules Generated (R, R2 and R1) as a function of Support (keeping confidence = 0.5) 

 Table 4.7 lists the number of rules as a function of confidence by keeping the support value fixed at 0.001. The visualization 

of table 4.7 is shown in figure 4.4. 
Table - 4.7 

Number of Rules Generated As Function of Confidence Value (Support = 0.001) 

CONFIDENCE R R2 R1 

0.1 32791 5053 390 

0.2 21634 3481 318 

0.3 13770 2383 243 

0.4 8955 1633 176 

0.5 5668 1160 144 

0.6 2918 742 105 

0.7 1279 425 75 

0.8 410 191 50 

0.9 129 78 27 

1 28 24 13 

 
Fig. 4.4: Number of Rules Generated (R, R2 and R1) as a function of Confidence (keeping support = 0.001) 
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The scatter plot of all the 5663 rules obtained by keeping minimum support = 0.001 , and minimum confidence = 0.5 , are shown 

in the figure 4.3. 

 
Fig. 4.5: Scatter Plot for all rules 

 
Fig. 4.6: Grouped Plot for all the Association Rules 

 Using MapReduce Framework in Association Rule Mining in Dynamic Matrix MsApriori B.

 Setting up of the MFI Matrix 1)

Consider the transaction dataset as specified above with N = 9835 transactions and I = 169 distinct items. The first step is to 

compute the support values of individual items and to sort them in the order of support values. Assuming that the list of elements 

is unordered and considering the first 20 items of the list, the support count of individual items can be done in the way as 

depicted in table 4.8. 

 Consider a k=10 node cluster for implementing parallel processing environment. The computation workflow for MFI for 

setting up item support vector is as shown: 
Table - 4.8 

Computation of Support Values of Different Items in DB 

Node /Time 40,000 200  

Node 1 
Transactions 1-1000 <key1, value1> 

  

Items 1-20 
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Node 2 
Transactions 1001-2000 <key2, value2> 

  

Items 1-20 
   

Node 3 
Transactions 2001-3000 <key3, value3> 

  

Items 1-20 
   

Node 4 
Transactions 3001-4000 <key4, value4> 

  

Items 1-20 
   

Node 5 
Transactions 4001-5000 <key5, value5> REDUCE <key, value> 

Items 1-20 
   

Node 6 
Transactions 5001-6000 <key6, value6> 

  

Items 1-20 
   

Node 7 
Transactions 6001-7000 <key7, value7> 

  

Items 1-20 
   

Node 8 
Transactions 7001-8000 <key8, value8> 

  

Items 1-20 
   

Node 9 
Transactions 8001-9000 <key9, value9> 

  

Items 1-20 
   

Node 10 
Transactions 9001-9835 <key10, value10> 

 

Items 1-20 
   

The time description at the top of the table 4.8 can be understood by table 4.9 
Table - 4.9 

Time Complexity Using Map Reduce 

Operation Descriptions 

  Time 

Node i One item scan through DB and adding supports: 1000+1000 20*2000 = 40,000 time units 

Additions 10*20 200 

Loops 9 9*(40000+200) 

 It is assumed that it takes a unit operation time in scanning a specific item in a transaction (on an average). Also, it takes unit 

operation time in adding two numbers. Thus, to scan 20 items over a database of 1000 records, it takes 20000 units operation 

time. Also, for summing these values consecutively after each scan, an additional 1000*20 operation time is need. For combining 

these values as a single vector, 10*20 unit operational time is needed. Thus a total of 40200 unit operation time is needed for 

phase 1. At the end of this phase, one has the support count values of the first 20 items of the unordered item list, in which the 

key values are the list of items and the value holds the corresponding support values. A total of 9 rounds are needed, thus giving 

a total time of 40010*9 = 361800. After this support value computation, the sorting operation on the itemset consisting of about 

169 items which requires time of the order of O(n*logn) which equals to about 377. Thus, a total of about 362177 time units.  

 On the other hand, if the same operation is performed over a uniprocessor system under same settings, the time required would 

be 9835*169*2 = 3324230. This is because each item is checked in all the transactions, and for each transaction, the support 

count, (either 1 or 0) is added to the computed number till that scan. The improvement in the time complexity in computing the 

support values of distinct items and sorting them in the order of support values is depicted in figure 4.7. 

 
Fig. 4.7: Comparison of Execution time over Uni-Processor and Cluster Environment. (Computation of Item Support Values and Item Sorting 

thereafter) 
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 It is evident that MapReduce framework provides an improvement of 94 percent as compared to the standalone solution. 

 At the end of this iteration, the support values of all the elements are computed and the elements are sorted in descending 

order of the support values. The time complexity of setting up of MFI matrix can be measured as shown in table 4.10. 
Table - 4.10 

Setting Up Of MFI 

Node /Time 
 

Binary Vectors 
 

 

Node 1 
Transactions 1-1000 <key1, value1> 

  

Items All 
   

Node 2 
Transactions 1001-2000 <key2, value2> 

  

Items All 
   

Node 3 
Transactions 2001-3000 <key3, value3> 

  

Items All 
   

Node 4 
Transactions 3001-4000 <key4, value4> 

  

Items All 
   

Node 5 
Transactions 4001-5000 <key5, value5> REDUCE <key, value> 

Items All 
   

Node 6 
Transactions 5001-6000 <key6, value6> 

  

Items All 
   

Node 7 
Transactions 6001-7000 <key7, value7> 

  

Items All 
   

Node 8 
Transactions 7001-8000 <key8, value8> 

  

Items All 
   

Node 9 
Transactions 8001-9000 <key9, value9> 

  

Items All 
   

Node 10 
Transactions 9001-9835 <key10, value10> 

 

Items All 
   

 Each node processes entire sorted list of items, in the order of support values, and represent its 1000 transactions in terms of 

binary vector of length 169 (item count), in which a 1 indicates the presence of the item and a zero indicates the absence of the 

item. For each transaction, the binary representation is done in 169*n time units where n is the maximum number of items in any 

transactions. Considering the average value of items in any transactions to be 10, the time unit operations in one vector 

representation is 1690. Thus, for a total of 1000 transactions, the time required is 1690*1000 = 1690000. Also, each of the vector 

is compared if it has already been existed or not, which takes 1000(1000+1)/2 comparisons for the entire set of 1000 records. 

Each of this comparison has a time complexity of 169 as there are 169 elements in vector matching. Thus the computation of 

comparison needs a time of 84584500 time units. These records are tabulated in STE matrix requiring 1000 time units. This 

gives a total computation time of 86275500. 

 After this matching, the individual blocks are matched again to remove the redundancy among the records. There are 
10

C2 = 45 

pairs of blocks, each requiring 10000 matching operations, thus requiring 450000 matching of vectors to remove redundancy. 

Each such comparison matching requires 169 time units operation, thus giving a total of 76050000 time units operation. The 

removal of the corresponding rows from STE and the increase in the count of redundant rows can be ignored. Thus, MapReduce 

Architecture requires a total of 162325500 time unit operations to create MFI. 

The time required by a uni-processor system for the same can be computed as follows: 
Table - 4.11 

Time Complexity Analysis of Uniprocessor System Architecture 

Operation Time Complexity 

One Vector Representation 1690 (Assuming 10 items average per transaction) 

9835 Transactions 16621150 

Comparison Operation 8450845000 

STE Updating 10000 

Total 8467477840 

The comparison of the time complexity of Uniprocessor and MapReduce Architecture is shown in figure 4.8. 
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Fig. 4.8: Comparison of Execution time over Uni-Processor and Cluster Environment. (Computation of Matrix of Frequent Items, MFI) 

 Table 4.11 suggests a relative improvement of 94 percent using 10 node cluster framework in the computation of MFI. The 

mining of association rules can be made in a straightforward way after the creation of MFI using the Apriori Property. Also, all 

the elements are considered for frequent itemset mining in MsApriori. The combined support of a set of items is the minimum 

support of any of the item belonging to the set and using this approach, the confidence values of rules are checked for association 

rule mining. New items can be added in the matrix in batch mode ion which the batch size can be fixed depending upon the 

relative accuracy desired in the results and without causing unnecessary reprocessing in the computation of support values and 

MFI matrix. Section 5 analyses the results and concludes the paper. 

V. CONCLUSION AND FUTURE SCOPE 

Association rule mining aims to discover interesting patterns in a database. There are two steps in this data mining technique. 

The first step is finding all frequent itemsets and the second step is generating association rules from these frequent itemsets. 

Association rule mining algorithms generally focus on the first step since the second one is direct to implement. Although there 

are a variety of frequent itemset mining algorithms, each one requires some pre-specified value of the minimum support count. 

This results in inefficient mining of information as some of the infrequent rules get skipped away although these are of particular 

interest. Moreover, classical Apriori algorithm is inefficient in the sense that complete database scan has to be performed for 

generating k-frequent itemsets from K-1 frequent itemsets. 

 The contribution of this paper is many fold. It first proposes Matrix Apriori for Multiple Minimum Support Values of the 

items. The existing algorithm for implementing multiple minimum support is called MsApriori. Thus, a technique of 

implementing MsApriori using Matrices, called Matrix MsApriori is presented. Moreover, a technique for solution of the 

problem of mining association rules is presented using MapReduce Framework is presented. The MapReduce framework 

employs clustering techniques implementing multiprocessing to solve large computational problems using divide and conquer 

technique. The comparison of the analytical results over uni-processor and cluster is presented and the results are tabulated 

which shows an improvement of about 94 percent using 10 node cluster over a transaction database consisting of 9835 

transactions.  

 As future scope, the same algorithm is to be implemented utilizing the domain specific heuristic knowledge to filter out 

uninteresting rules from the interesting ones, to provide a complete solution as a whole, which relates to the issues of efficiency, 

infrequent rule mining and dynamic database problem. Moreover, machine learning can also be implemented using the 

categorical description of the item sets to give an insight into which of the rules may be investigated for being potentially 

profitable. This can be done using the training sets based on the already discovered profitable association rules and thereby, 

checking for the profitability of the new ones.   
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