
IJIRST –International Journal for Innovative Research in Science & Technology| Volume 2 | Issue 05 | October 2015
ISSN (online): 2349-6010

All rights reserved by www.ijirst.org 143

Improving the Performance of MS-Apriori

Algorithm using Dynamic Matrix Technique and

Map-Reduce Framework

Ms. Rachna Chaudhary Mr. Sachin Sharma

M. Tech. Scholar Associate Professor

Department of Computer Science and Engineering Department of Computer Science and Engineering

Rajasthan Institute of Engineering and Technology, Jaipur,

(Raj)

Rajasthan Institute of Engineering and Technology, Jaipur,

(Raj)

Mr. Vijay Kumar Sharma

Associate Professor

Department of Computer Science and Engineering

Rajasthan Institute of Engineering and Technology, Jaipur, (Raj)

Abstract

Data Mining refers to the process of mining useful data over large datasets. The discovery of interesting association relationships

among large amounts of business transactions is currently vital for making appropriate business decisions. This is the reason that

the research in data mining is carried out largely for business decision making rather than for academic importance. Association

rule analysis is the task of discovering association rules that occur frequently in a given transaction data set. Its task is to find

certain relationships among a set of data (itemset) in the database. It has two measurements: Support and confidence values.

Confidence value is a measure of rule’s strength, while support value corresponds to statistical significance. There are currently a

variety of algorithms to discover association rules. Most of the algorithms need a specification of minimum support value as user

input. Specifying minimum support values of items is not recommended as it leads to very less or very large rules. With a

sufficiently high support value, the less frequent elements gets eliminated, leaving only the elements which are most frequent.

Thus, knives and spoons may get eliminated leaving only biscuits and milk. One approach for this problem is proposed by

MsApriori Algorithm. However, both Apriori and MsApriori are computationally complex and need large computational time

for large datasets over traditional machines. One solution to this problem is proposed by Dynamic Matrix Apriori which is much

faster as compared to traditional Apriori in the generation of candidate sets. The contribution of this paper is twofold. It first

proposed a method to use MsAprioiri using Dynamix Matrix Technique. It then proposes a framework to use the Algorithm

under the Map Reduce Programming model. Experiments on large set of data bases have been conducted to validate the

proposed framework. The achieved results show that there is a remarkable improvement in the overall performance of the system

in terms of run time, the number of generated rules, and number of frequent items used.

Keywords: Apriori Algorithm, Association rule mining, Multiple Item Support, MapReduce

I. INTRODUCTION

Large quantity of data have been collected in the course of day-to-day management in business, administration, sports, banking,

the delivery of social and health services, environmental protection, security, politics and endless ventures of modern society.

Such data is often used for accounting and for management of the customer base. Typically, management data sets are sizable,

exponentially growing and contain a large number of complex features. While these data sets reflect properties of the managed

subjects and relations, and are thus potentially of some use to their owner, they generally have relatively low information density,

in the context of association rule mining. Robust, simple and computationally efficient tools are required to extract information

from such data sets. The development and understanding of such tools forms the core of data mining. These tools utilizes the

ideas from computer science, mathematics and statistics.

 The introduction of association rule mining in 1993 by Agrawal, Imielinski and Swami [1] and, in particular, the development

of an efficient algorithm by Agrawal and Srikant [2] and by Mannila, Toivonen and Verkamo [3] marked a shift of the focus in

the young discipline of data mining onto rules and data bases. Consequently, besides involving the traditional statistical and

machine learning community, data mining now attracted researchers with a variety of skills ranging from computer science,

mathematics, science, to business and administration. The urgent need for computational tools to extract information from data

bases and for manpower to apply these tools has allowed a diverse community to settle in this new area. The data analysis aspect

of data mining is more exploratory than in statistics and consequently, the mathematical roots of probability are somewhat less

prominent in data mining than in statistics. Computationally, however, data mining frequently requires the solution of large and

complex search and optimization problems [4] and it is here where mathematical methods can assist most. This is particularly the

Improving the Performance of MS-Apriori Algorithm using Dynamic Matrix Technique and Map-Reduce Framework
(IJIRST/ Volume 2 / Issue 05/ 023)

All rights reserved by www.ijirst.org 144

case for association rule mining which requires searching large data bases for complex rules. Mathematical modeling is required

in order to generalize the original techniques used in market basket analysis to a wide variety of applications. Mathematical

analysis provides insights into the performance of the algorithms. An association rule is an implication or if-then-rule which is

supported by data. The motivation given in [5] for the development of association rules is market basket analysis which deals

with the contents of point-of-sale transactions of large retailers. A typical association rule resulting from such a study could be

"90 percent of all customers who buy bread and butter also buy milk". Insights into customer behavior may also be obtained

through customer surveys, but the analysis of the transactional data has the advantage of being much cheaper and covering all

current customers. Compared to customer surveys, the analysis of transactional data does have some severe limitations, however.

For example, point-of-sale data typically does not contain any information about personal interests, age and occupation of

customers. Nonetheless, market basket analysis can provide new insights into customer behavior and has led to higher profits

through better customer relations, customer retention, better product placements, product development and fraud detection.

Market basket analysis is not limited to retail shopping but has also been applied in other business areas including:

1) Credit card transactions,

2) Telecommunication service purchases,

3) Banking services,

4) Insurance claims, and

5) Medical patient histories.

6) Economy, Stock Predictors

 Association rule mining generalizes market basket analysis and is used in many other areas including genomics, text data

analysis and Internet intrusion detection. For motivation, the focus is given on retail market basket analysis in this paper. When a

customer passes through a point of sale, the contents of his market basket are registered. This results in large collections of

market basket data which provide information about which items were sold and, in particular, which combinations of items were

sold.

 Association rule mining [1,2] is one of the most important and well-researched techniques of data mining, that aims to induce

associations among sets of items in transaction databases or other data repositories. Currently, Apriori algorithms [1,2,6] play a

major role in identifying frequent item set and deriving rule sets out of it. Apriori algorithm is the classic algorithm of association

rules, which enumerate all of the frequent item sets. When this algorithm encountered dense data due to the large number of long

patterns emerge, this algorithm's performance declined dramatically. In order to find more valuable rules, this paper proposes an

improved algorithm of association rules over the classical Apriori algorithm. The improved algorithm is verified, the results

show that the improved algorithm is reasonable and effective, can extract more value information.

 Problem Statement A.

Association rule analysis is the task of discovering association rules that occur frequently in a given transaction data set. Its task

is to find certain relationships among a set of data (itemset) in the database. It has two measurements: Support and confidence

values [1, 2]. Confidence value is a measure of rule’s strength, while support value is of statistical significance. Traditional

association rule mining techniques employ predefined support and confidence values. However, specifying minimum support

value of the mined rules in advance often leads to either too many or too few rules, which negatively impacts the performance of

the overall system. In this paper, it is proposed to replace the Apriori’s user-defined minimum support threshold with a more

meaningful aggregate function based on empirical analysis of the database. Also, Classical Apriori Algorithm is inefficient in

finding out association rules as the number of database operations is huge and every time the database is updated, the mining of

association rules is to be performed from a fresh start. To overcome the issue of rescanning the database, Matrix Apriori

algorithm [7] was proposed in which matrices MFI and STE are prepared to mine association rules. Matrix Apriori gives great

performance improvement over classical Apriori. Further, to manage for the dynamic nature of transactional databases, dynamic

matrix Apriori algorithm was proposed which manages the dynamic nature of the databases without recreation of the MFI and

STE matrices. Although no provision was provided for accounting the custom defined support values for the datasets. This paper

focuses on the issue of setting up custom support values over Dynamic Matrix Apriori algorithm for efficient association rule

mining. It also proposes a framework for using MapReduce [8] technique in multiple node Cluster based environments so as to

reduce time complexity for mining of association rules over bigdata.

 Motivation B.

Association rule mining has become a popular research area due to its applicability in various fields such as market analysis,

forecasting and fraud detection. Given a market basket dataset, association rule mining discovers all association rules such as “A

customer who buys item X, also buys item Y at the same time”. These rules are displayed in the form of X → Y where X and Y

are sets of items that belong to a transactional database. Support of association rule X → Y is the percentage of transactions in

the database that contain X U Y . Association rule mining aims to discover interesting relationships and patterns among items in

a database. It has two steps; finding all frequent itemsets and generating association rules from the itemsets discovered. Itemset

denotes a set of items and frequent itemset refers to an itemset whose support value is more than the threshold described as the

minimum support. Since the second step of the association rule mining is straightforward, the general performance of an

algorithm for mining association rules is determined by the first step. Therefore, association rule mining algorithms commonly

Improving the Performance of MS-Apriori Algorithm using Dynamic Matrix Technique and Map-Reduce Framework
(IJIRST/ Volume 2 / Issue 05/ 023)

All rights reserved by www.ijirst.org 145

concentrate on finding frequent itemsets. For this reason, in most of the literature, “association rule mining algorithm” and

“frequent itemset mining algorithm” terms are used interchangeably. Apriori and FP-Growth [9] are known to be the two

important algorithms each having different approaches in finding frequent itemsets. The Apriori Algorithm uses Apriori Property

in order to improve the efficiency of the level-wise generation of frequent itemsets. On the other hand, the drawbacks of the

algorithm are candidate generation and multiple database scans. FP-Growth comes with an approach that creates signatures of

transactions on a tree structure to eliminate the need of database scans and outperforms compared to Apriori. A recent algorithm

called Matrix Apriori [7] which combines the advantages of Apriori and FP Growth was proposed. The algorithm eliminates the

need of multiple database scans by creating signatures of itemsets in the form of a matrix. The algorithm provides a better overall

performance than FP-Growth. Although all of these algorithms handle the problem of association rule mining, they ignore the

mining for infrequent items as all these techniques employs user specified minimum support. Although, work on multiple

minimum support has been carried out in recent years, no existing techniques addresses the issue of implementing multiple

minimum support [10,11,12] over matrix Apriori algorithm.

 The user specified support values are generally not optimal and a common minimum-support value cannot be assigned to all

the items. Thus, there is a critical need to develop techniques so as to compensate for this issue.

 This paper is orgranized as follows. Section 2 gives the objectives and research approach used in the paper. Section 3

discusses Matrix Apriori Algorithm and the techniques for evaluation of itemset classes for custom specified support values. It

also presents the techniques through which the custom support values can be inculcated in matrix Apriori algorithm. It also

proposes technique to use the MapReduce framework for mining of association rules. Section 4 shows the test results and the

performance evaluations. The section begins with an illustration of walmart transaction database. Custom values are evaluated

for datasets and association rules are mined. Also, 1, 2 and 3 frequent itemsets are mined based on the support values and the

matrix apriori algorithm using MapReduce. Section 5 is the conclusion section. A summary of the paper and suggestions for

future research are stated.

II. RESEARCH APPROACH

The objective of this paper is to provide a mechanism for user defined support values for various classes of data items for

effective mining of association rules and at the same time, provide mechanism so that such technique can be inculcated into

matrix Apriori technique so that multiple scans of database can be avoided and association rules corresponding to infrequent

items can be accounted. It also aimed at the implementation of the proposed Dynamic Matrix MsApriori using the MapReduce

framework so that the proposed algorithm can be executed in cluster based environments to mine association rules in real time on

operational bigdata.

 For each item of the item universe, the support value is evaluated using entire thorough scan of the database. The range of

values of support of different items is tabulated in ascending order, thereby, providing a closed interval in which these support

values lies. This range of support values is very large for most general market basket databases. The support values are

maximum for everyday consumables like bread and butter and in contrast, very low for items such as food processor or

television. Thus a common minimum specified support value cannot be assigned to all the items for association rule mining. One

approach is to make classes of items belonging to specific range of support values over entire range of support values. Another

approach is to provide custom specified minimum support values to be assigned to each item based on the average values of the

support and the probability distribution of infrequent items. The derived Minimum Item Support (MIS) can be used in matrix

apriori algorithm for generation of MFI and STE matrices. Also, techniques are provided so that these custom specified support

values can be used with Matrix Apriori algorithm. A method is then proposed to inculcated dynamicity into the technique so that

new transactions can be added into the existing transaction matrix and results can be mined. It then propose an architecture to use

MapReduce for creation of MFI and STE for mining of Association rules over a cluster based system using the <key, value>

pairs and the corresponding reduce operation.

III. PROPOSED WORK

 Msapriori: Apriori With Multiple Minimum Support A.

Mining association rules with multiple minimum supports is an important generalization of the association-rule-mining, which

was proposed by Liu et al. This generalization is named as Multiple Support Apriori or MsApriori. The implementation of

MsApriori is straightforward except that it requires a large number of iteration as compared to standard Apriori.

The MsApriori algorithm can find rare item rules without producing a huge number of meaningless rules. Each item in the

database can have its minimum support value called minsup, which is expressed in terms of minimum item support (MIS). Users

can specify different MIS values for different items. By assigning different MIS values to different items, one can reflect the

natures of the items and their varied frequencies in the database.

 Let I={a1, a2,..., am} be a set of items and MIS(ai) denote the MIS value of item ai. Then the MIS value of itemset A={a1, a2,...,

ak} (1≤k≤m) is equal to

min [MIS(a1), MIS(a2).... MIS(ak)]

 Consider the following items in a database, bread, shoes and clothes. The user-specified MIS values are as follows:

MIS(bread) = 2%, MIS(shoes) = 0.1%, MIS(clothes) = 0.2%. If the support of itemset{clothes, bread} is 0.15%, then

Improving the Performance of MS-Apriori Algorithm using Dynamic Matrix Technique and Map-Reduce Framework
(IJIRST/ Volume 2 / Issue 05/ 023)

All rights reserved by www.ijirst.org 146

itemset{clothes, bread} is infrequent because the MIS value of itemset{clothes, bread} is equal to min[MIS(clothes),

MIS(bread)]=0.2%, which is larger than 0.15%.

 Matrix Apriori Algorithm B.

The Matrix Apriori Algorithm is a frequent itemset mining algorithm that combines the advantages of both Apriori and FP-

Growth algorithms. Resembling Apriori, algorithm Matrix Apriori consists of two steps. First, discover frequent patterns, and

second, generate association rules from the discovered patterns. The first step determines the performance of the algorithm.

 Let L = {i1, i2, …, im} be a set of items, D be a repository containing a set of transactions, δ a minimal support predefined by

the user, T a transaction, where each transaction T ⊆ L. Algorithm Matrix Apriori employs two simple structures for generating

frequent patterns: a matrix called MFI (matrix of frequent items) which holds the set of frequent items identified during the first

traversal of repository D, and a vector called STE which stores the support of candidate sets. Frequent items will be represented

by columns of MFI, however, they could also be represented by rows. The total number of frequent items is stored in variable

NFI and the total number of candidate sets NCS.

 Initially the database is scanned in order to determine frequent items. These items are sorted in a descending support count and

trimmed to those that are above the minimum support value to create the frequent items list. The sorted frequent items list is the

basis for the order of columns of the MFI. Subsequently, in the second scan, MFI and STE are built. The first row of the MFI is

left empty. This row will be updated later in the modification. Therefore, inserting rows to MFI begins after this empty row. For

each new transaction in the database, a row of zeros and ones is inserted according to the following rule. The row is constructed

by using the order in the frequent items list. For each item in the list, either “1” or “0” is added to the column of the row if the

transaction contains the item or not. If the transaction is already included in the MFI, then it is not stored again in a new row, but

its STE is incremented by “1”.

Consider the following illustration for Matrix Apriori algorithm:
Table - 3.1

Hypothetical Data of Transactions

Transaction Id ITEM SET

001 Coffee, dish-wash, eggs, gum, honey, ice-cream, ketchup, pasta

002 bread, eggs, flour, honey, ice-cream, pasta

003 coffee, eggs

004 Aluminum-foil, bread, Coffee, dish-wash, flour, honey, pasta

005 Aluminum-foil, bread, coffee, dish-wash, eggs, flour, gum, ice-cream, pasta

006 bread, eggs, flour, gum, honey, ice-cream, pasta

007 Aluminum-foil, bread, coffee, dish-wash, eggs, pasta

008 Aluminum-foil, Coffee, dish-wash, eggs, flour, honey, ice-cream, pasta

009 Aluminum-foil, Coffee, dish-wash, eggs, ketchup, pasta

0010 Aluminum-foil, Coffee, dish-wash, eggs, flour, ice-cream, pasta

 As specified earlier, the support count of an element is the number of times it appears in all the transactions. The tabulation of

the support values of various items is shown in table 3.2.
Table - 3.2

Item Support Count

Item Support

Aluminum-foil 6

Bread 5

Coffee 8

Dish-wash 7

Eggs 9

Flour 6

Gum 3

Honey 5

Ice-cream 6

Ketchup 2

Pasta 9

 Let the minimum support value be 6, then 1- Frequent itemset list is the list of all the elements having the support values

greater than or equal to 6. Table 3.3 lists frequent items sorted according to the list of frequency and eliminating those with less

than minimum support.

Table - 3.3

Sorted List of Frequent Items with Minimum Support
Item Support

Eggs 9

Pasta 9

Improving the Performance of MS-Apriori Algorithm using Dynamic Matrix Technique and Map-Reduce Framework
(IJIRST/ Volume 2 / Issue 05/ 023)

All rights reserved by www.ijirst.org 147

Coffee 8

Dish-wash 7

Aluminum-foil 6

Flour 6

Ice-cream 6

Bread 5

Honey 5

Gum 3

Ketchup 2

 The shaded items are the items which have support values less than the minimum specified support. These elements are to be

eliminated from further analysis

 It is important to note at this point that if the support values are used specified, as in the case of MsApriori, then the list of 1

frequent itemsets is to be prepared accordingly. The number of frequent items is stored in variable NFI; in this example, the

number of frequent items is 7.

 Table 3.4 lists the transaction id and transactions sorted by the order of support and elimination those elements which have

less than the minimum support.
Table - 3.4

Transaction Lists with Sorted Support

Transaction Id Sorted Item-Set

001 Eggs, pasta, coffee, dish-wash, ice-cream

002 Eggs, pasta, flour, ice-cream

003 Eggs, coffee

004 Pasta, coffee, dish-wash, Aluminum-Foil, Flour

005 Eggs, pasta, coffee, dish-wash, Aluminum-Foil, Flour, ice-cream

006 Eggs, pasta, flour, ice-cream

007 Eggs, pasta, Coffee, dish-wash, Aluminum-Foil

008 Eggs, pasta, Coffee, dish-wash, Aluminum-Foil, Flour, ice-cream.

009 Eggs, pasta, Coffee, dish-wash, Aluminum-Foil

010 Eggs, pasta, Coffee, dish-wash, Aluminum-Foil, Flour, ice-cream

Initially, MFI is prepared by second scan of the entire database.

 Each column of MFI represents an elements and each row represents a transaction. The columns are assigned to the elements

in the decreasing order of the support count as specified in table 3.5.

The binary representation of the transactions in terms of frequent items is shown in table 3.5
Table - 3.5

Transactions Represented As Binary Vectors

Items/ Transaction No. Eggs Pasta Coffee Dish- wash Aluminum-foil Flour Ice-cream

001 1 1 1 1 0 0 1

002 1 1 0 0 0 1 1

003 1 0 1 0 0 0 0

004 0 1 1 1 1 1 0

005 1 1 1 1 1 1 1

006 1 1 0 0 0 1 1

007 1 1 1 1 1 0 0

008 1 1 1 1 1 1 1

009 1 1 1 1 1 0 0

010 1 1 1 1 1 1 1

 Each of the row vectors is to be included in MFI as per the Matrix Apriori specification. This is performed as shown in table

3.5. The first row of MFI is left blank for computations to be performed later.

 Transactions 1 to 5 are all distinct so added in the MFI as these are in Table 3.5 and Row candidate set is set to 1 for each of

these transactions. Transaction 6 is identical to 5, so the count of STE for row 5 is incremented by 1. Transaction 7 is then added

to the matrix in row no. 7. Transaction 8 is identical to transaction 5 so count is STE in row five is again incremented by 1.

Transaction 9 is identical to transaction 7 so the STE row for 7 is incremented by 1. Transaction 10 is identical to 5 so the row 5

of STE is again incremented by1.

Table - 3.6

Initial Matrix of Frequent Items (MFI) and STE

Improving the Performance of MS-Apriori Algorithm using Dynamic Matrix Technique and Map-Reduce Framework
(IJIRST/ Volume 2 / Issue 05/ 023)

All rights reserved by www.ijirst.org 148

 The resulting values in matrix MFI and vector STE, after full traversal of repository D, are presented in table 3.6. The fourth

candidate set (stored in row 5) has support equal to 3, that is, the candidate set is present in three transactions of repository D.

This value is stored in the fourth position of vector STE. The next procedure to be executed is modified MFI, which begins its

process in the first row of MFI and has the goal of writing indexes to accelerate the search for frequent patterns. In the first row

of matrix MFI, the row number are stored where the j-th frequent item appears for the first time. For example, frequent item flour

appears for the first time in the third row, hence MFI[1, 6] = 3. The value 3 inserted is thus an index, and following it, the row

number where frequent item flour appears for the second time will be stored in row 3 of the matrix, that is in MFI[3, 6] the

inserted value will be 5. The next row where flour is found is row 6, so this value is stored in MFI[5, 6]. Finally, element MFI[6,

6] stores the value 1 to indicate that no more rows contain item flour. Figure 3.6 shows the result obtained after modifying the

MFI. The reason for insertion in 3, 5 and 6th row in case of element flour being this that these are the nonzero cells in the column

vector of these columns.
Table - 3.7

Modified Matrix of Frequent Items (MFI) and STE

 The last step is to find Frequent Patterns, which takes as input matrix MFI and vector STE as presented in table 3.7. This

procedure applies the method of growing patterns, basically consisting of combining frequent items, determining the support

associated to this combination, and comparing the support of a combination with the minimal support to decide whether or not it

is a frequent pattern.

Improving the Performance of MS-Apriori Algorithm using Dynamic Matrix Technique and Map-Reduce Framework
(IJIRST/ Volume 2 / Issue 05/ 023)

All rights reserved by www.ijirst.org 149

 In the process of searching for frequent patterns, item ice-cream is combined with the frequent items found on its left hand

side (flour, aluminum-foil, dish-wash, coffee, pasta and eggs). The support for each of the combinations is calculated. For this

purpose, all the cells of both the vector are analyzed for matching values. The matching values in the columns of both ice-cream

and flour are 2, 6 and 7. The corresponding values in STE are 1, 5 and 6. This is important here to note that STE vector count is

one less than the row count in MFI. The summation of the count of these entries in STE table is 1+3+1 = 5 which is the support

value of this itemset. The support values if the two itemset, of element ice-cream with all other elements is listed in table 3.8
Table - 3.8

Combinations Obtained Based On Conditional Pattern i

Combined Items Support

flour-icecream 5

Aluminiumfoil-icecream 3

dishwash-icecream 4

Coffee-icecream 4

pasta-icecream 6

eggs-icecream 6

Table 3.9 presents the sorted lists of frequent items having minimum support.
Table - 3.9

Combinations Obtained Based On Conditional Pattern i with Minimum Support

Combined Items Support

pasta-icecream 6

eggs-icecream 6

flour-icecream 5

dishwash-icecream 4

Coffee-icecream 4

Aluminiumfoil-icecream 3

 If the minimum support considered for any element pair be 6, then only the twp pairs; viz, <pasta, ice-cream> and <eggs, ice-

cream> are considered as frequent pairs whereas the last three in the table, which are shown highlighted are discarded from

further analysis.

In the next iteration of the search process, these two combinations will be taken as conditional patterns.

1) For conditional pattern <pasta, ice-cream>, there is only one item to the, namely item eggs, hence combination <eggs,

pasta, icecream> with a support of 6, becomes a frequent pattern.

2) For conditional pattern <eggs, icecream>, no items exist to the left of eggs, therefore no combination can be generated.

 Once the analysis on item ice-cream has concluded, the process continues with conditional pattern flour. Combinations are

made with the items situated to the left of flour (aluminium-foil, dish-wash, coffee, pasta and eggs), obtaining the combinations

with their corresponding support values.

 Matrix Apriori works without candidate generation, scans database only twice and uses Apriori Property. Also, the

management of matrix is easy. Also, Matrix Apriori can be tabulated with Multiple support values with slight modifications as

per the specifications given in section 3.1.

 Dynamic Matrix Apriori C.

It is impractical to scan database to construct MFI and STE every time the database is updated. Also, the transactional database

of a typical market basket analysis frequently changes with a number of transactions being added every day. This gives

motivation for development of techniques to inculcate dynamicity in the matrix apriori algorithm so as to dynamically generate

association rules based on the overall transactional database under consideration.

 Dynamic Matrix Apriori Works on the similar lines as the matrix apriori algorithm. When new transactions arrive, they are

scanned and 1-itemset ordered list of items are updated to include the 'now frequent' items.

 The new items in the additions are included to the MFI by adding new columns. The MFI is updated as follows:

 First, the new transaction is checked whether it is existed in the MFI or not. If it exists, its STE is incremented by “1”; if it

does not exist, it is added to the MFI. Adding to the modified MFI is done by setting the cell value to the row number of

transaction where the “1” value is stored in the MFI. When the item does not exist in the remaining transactions of the

incremental database, the cell value is set to “1”. Finally, according to the change of the 1-itemset ordered list of items, the order

of items in the MFI is changed. Dynamic Matrix Apriori can also be processed for Multiple Minimum Support of the itemsets.

The same sets of techniques are also applicable to implement Dynamic Matrix MsApriori.

 MapReduce Framework for Dynamic Matrix MsApriori D.

The MapReduce framework is applicable to Matrix Apriori technique as per the following proposed scheme shown in figure 3.1.

The implementation platform for MapReduce framework is Hadoop which is considered for execution in single server mode. It

is important to note that most of the operations of Apriori Algorithm for databases involves counting operation which are most

suitable to implement using MapReduce Model for multiprocessing environments. In Matrix Apriori Algorithm, there are only

two database scans followed by matrix operations to mine frequent itemsets. This can be readily implemented in Hadoop as

Improving the Performance of MS-Apriori Algorithm using Dynamic Matrix Technique and Map-Reduce Framework
(IJIRST/ Volume 2 / Issue 05/ 023)

All rights reserved by www.ijirst.org 150

MapReduce implementation. As it is clear that the resultant MFI matrix of real dataset is large, the problem of mining

association rules from n-frequent itemsets can be solved using MapReduce Framework.

Fig. 3.1: Proposed Framework of Dynamic Matrix MsApriori using MapReduce

 Setting up of the MFI Matrix 1)

Consider the transaction dataset as specified above with N transactions and I distinct items. Consider a k node cluster with the

implementation of MapReduce, the key value pair allotment and computation assignment can be done in the form as shown in

table 3.10.
Table - 3.10

Combinations Obtained Based On Conditional Pattern i with Minimum Support

Node Operation

#1
Transactions: First t Transactions

Elements : First set of items

#2
Transactions: Next t transactions

Elements : First set of items

#3
Transactions: Next t transactions

Elements : First set of items

#k
Transactions: Next t transactions

Elements : First set of items

 Consider the operation done by i
th

 node in the first phase of computation. The i
th

 node operates on the set first of items of the

unordered item list. Also, the i
th

 node operates on the transaction labeled from (i-1)*t+1 to i*t.

 For the first set of items, the support values of these items are computer over subsets of transaction by the corresponding

nodes. Let the time required for processing of specified set of items overt transactions is s and the number of rounds needed for

entire database to be scanned be r, then the time required for processing of first set of items is s*r.

The reduce operation on the set can be performed as follows:

Improving the Performance of MS-Apriori Algorithm using Dynamic Matrix Technique and Map-Reduce Framework
(IJIRST/ Volume 2 / Issue 05/ 023)

All rights reserved by www.ijirst.org 151

 The support values of the items at the end of each round is added and stored. The beginning of next round takes a fresh start of

the item count starting from zero and scans the database transactions which are allotted next. This again followed by subsequent

addition to the previous list which finally gives the support count of the subset of items considered at the end of the r
th

 round.

 The process is repeated for the next subset of items and followed until all the items in the list are computed over the entire

database. If there a p subsets of items, then the time required for scanning of transaction database over the entire set of items is

s*r*p.

 The items can then be arranged in the ascending order of support values. The representation of the entire database in terms of

binary sparse matrix can also be done through assignment over the cluster node in the following way.

 The item list in the descending order of support values is stored in a vector v and the set of transactions is represented as

binary vectors of length v. The checking of duplicity within the transaction group computed by a cluster node in any round can

be done through a flag or key value which stores the count as how many times the vector has been repeated in the set of nodes,

and increasing the count when the same vector is encounter again, and then skipping it.

 At the end of the first round all binary vectors are stored as separate subsets of vectors. For k such sets, a total of C(k,2) pairs

are possible. Taking any two subsets at a time, a cumulative checking of duplicates is performed to remove the duplicates. This

can be checked parallel by assignment of pairs to cluster nodes, and removing duplicates, while at the same time, increasing the

count in the lower order set. This can only be done in k rounds in which at the first round, set 1 is checked amongst all other set

and so on for subsequent rounds.

 Finally, at the end of these rounds, the transactions are added to MFI matrix and the count are stored in STE array. In the next

round, the same process is repeated. as duplicates are eliminated and then stored in the MFI matrix. Finally, when the MFI

matrix is complete, the vector sets representing individual transactions are assigned to cluster nodes in groups for eliminating

redundancy as a whole using aforementioned techniques and making a corresponding change in STE.

 Setting up of the Modified MFI Matrix 2)

The modified MFI matrix can be built up by processing the MFI matrix as per the rules to compute modified MFI. However, the

large size of MFI restricts it from being read as a whole. However, one factor that accounts of its storage in efficient way is this

MFI is a typical sparse matrix whose most entries are zero. The nonzero entries in the individual columns can be counted and

modified MFI can be tabulated.

 The non-zero entry just above the occurrence of 1 in any column corresponding to any element gives the support values of that

element in the transactions. At this stage, multiple minimum support can be specified by the user and the items no fulfilling the

minimum support criteria can be eliminated.

 Computing Frequent Itemsets 3)

The pairing of the item with least support with the other items to the left of it is made by assigning such pairs to the cluster nodes

till the pairing of the leftmost with all other items is being made. For any particular grouping of the item with the other item, the

minimum support count of the set is the minimum of the support count of any of the two item. However, the confidence remains

a universal measure and has to be specified for the computation of association rules. More strong association rules are computed

with higher values of minimum confidence.

 Till the computation of two frequent itemsets, the Apriori property is not used. For three of more frequent itemsets, Apriori

property is used to mine association rules.

 Section 4 analyzes the execution results on real database of WalMart Megastore and gives the implications.

IV. ANALYSIS OF PROPOSED WORK

 Analysis of Transaction Data A.

A part of local grocery store database, is shown below in table 4.1. The complete mysql dump in the form of csv (filename:

grocery.csv) of the database is included in the CD-ROM enclosed.
Table - 4.1

Subset Of Transactions From The Transaction Data Of Grocery Store

Transaction Item-list (Representative)

T1 citrus fruit, semi-finished bread, margarine, ready soups

T2 tropical fruit, yogurt, coffee

T3 whole milk

T4 pip fruit, yogurt, cream cheese, meat spreads

T5 other vegetables, whole milk, condensed milk, long life bakery product

T6 whole milk, butter, yogurt, rice, abrasive cleaner

T7 rolls/buns

T8 other vegetables, UHT-milk, rolls/buns, bottled beer, liquor (appetizer)

T9 pot plants

Improving the Performance of MS-Apriori Algorithm using Dynamic Matrix Technique and Map-Reduce Framework
(IJIRST/ Volume 2 / Issue 05/ 023)

All rights reserved by www.ijirst.org 152

T10 whole milk, cereals

T11 tropical fruit, other vegetables, white bread, bottled water, chocolate

T12 citrus fruit, tropical fruit, whole milk, butter, curd, yogurt, flour

T13 Beef

T14 frankfurter, rolls/buns, soda

T15 chicken, tropical fruit

T16 butter, sugar, fruit/vegetable juice, newspapers

T17 fruit/vegetable juice

T18 packaged fruit/vegetables

T19 Chocolate

T20 specialty bar

T21 other vegetables

T22 butter milk, pastry

T23 whole milk

T24 tropical fruit, cream cheese , processed cheese, detergent, newspapers

T25 tropical fruit, root vegetables, other vegetables, frozen dessert, rolls/buns, flour, sweet spreads

T26 bottled water, canned beer

T27 Yogurt

T28 sausage, rolls/buns, soda, chocolate

T29 other vegetables

T30 brown bread, soda, fruit/vegetable juice, canned beer, newspapers, shopping bags

 A set of 9,835 records are considered for association rule mining using proposed techniques. The item list and the

corresponding support values for the transactions are provided in table 4.2 and in figure 4.1.
Table - 4.2

Item List and the Support Values

whole milk 2513 Grapes 220 sauces 54

other vegetables 1903 chewing gum 207 Jam 53

rolls/buns 1809 Detergent 189 spices 51

Soda 1715 red/blush wine 189 curd cheese 50

Yogurt 1372 white wine 187 cleaner 50

bottled water 1087 pickled vegetables 176 liver loaf 50

root vegetables 1072 semi-finished bread 174 male cosmetics 45

tropical fruit 1032 baking powder 174 Rum 44

shopping bags 969 Dishes 173 meat spreads 42

Sausage 924 Flour 171 ketchup 42

Pastry 875 pot plants 170 brandy 41

citrus fruit 814 soft cheese 168 light bulbs 41

bottled beer 792 processed cheese 163 Tea 38

Newspapers 785 Herbs 160 specialty fat 36

canned beer 764 canned fish 148 abrasive cleaner 35

pip fruit 744 Pasta 148 skin care 35

fruit/vegetable juice 711 seasonal products 140 nuts/prunes 33

whipped/sour cream 705 cake bar 130 artif. sweetener 32

brown bread 638 packaged fruit/vegetables 128 canned fruit 32

domestic eggs 624 Mustard 118 syrup 32

Improving the Performance of MS-Apriori Algorithm using Dynamic Matrix Technique and Map-Reduce Framework
(IJIRST/ Volume 2 / Issue 05/ 023)

All rights reserved by www.ijirst.org 153

Frankfurter 580 frozen fish 115 nut snack 31

margarine 576 cling film/bags 112 snack products 30

Coffee 571 spread cheese 110 Fish 29

Pork 567 Liquor 109 potato products 28

Butter 545 frozen dessert 106 bathroom cleaner 27

Curd 524 Salt 106 cookware 27

Beef 516 canned vegetables 106 soap 26

Napkins 515 dish cleaner 103 cooking chocolate 25

Chocolate 488 flower (seeds) 102 pudding powder 23

frozen vegetables 473 condensed milk 101 tidbits 23

Chicken 422 roll products 101 cocoa drinks 22

white bread 414 pet care 93 organic sausage 22

cream cheese 390 photo/film 91 prosecco 20

Waffles 378 mayonnaise 90 flower soil/fertilizer 19

salty snack 372 sweet spreads 89 ready soups 18

long life bakery product 368 chocolate marshmallow 89 specialty vegetables 17

Dessert 365 Candles 88 organic products 16

Sugar 333 specialty cheese 84 honey 15

UHT-milk 329 dog food 84 decalcifier 15

hamburger meat 327 frozen potato products 83 cream 13

Berries 327 house keeping products 82 frozen fruits 12

hygiene articles 324 Turkey 80 hair spray 11

Onions 305 Instant food products 79 rubbing alcohol 10

specialty chocolate 299 liquor (appetizer) 78 liqueur 9

Candy 294 Rice 75 make up remover 8

misc. beverages 279 instant coffee 73 salad dressing 8

frozen meals 279 Popcorn 71 whisky 8

Oil 276 Zwieback 68 toilet cleaner 7

butter milk 275 Soups 67 baby cosmetics 6

specialty bar 269 finished products 64 frozen chicken 6

Beverages 256 Vinegar 64 bags 4

Ham 256 female sanitary products 60 kitchen utensil 4

Meat 254 kitchen towels 59 preservation products 2

ice cream 246 dental care 57 baby food 1

hard cheese 241 Cereals 56 sound storage medium 1

sliced cheese 241 sparkling wine 55

cat food 229 Softener 54

Improving the Performance of MS-Apriori Algorithm using Dynamic Matrix Technique and Map-Reduce Framework
(IJIRST/ Volume 2 / Issue 05/ 023)

All rights reserved by www.ijirst.org 154

Fig. 4.1: Plot of Support Values of all the items in the transactions listed in the 9835 transaction

 The binary transition matrix of transaction database consists of a matrix with 9835 rows and 164 columns. The column values

correspond to the maximum number of items in any of the transaction of the database record.

 The category information from the products can be obtained by the level information provided in the transactions. For the data

considered in this analysis, the level information of a subset of data is depicted in table 4.3
Table - 4.3

Level Data from Item List

Labels level2 level1

1 frankfurter Sausage meet and sausage

2 Sausage sausage meet and sausage

3 liver loaf sausage meet and sausage

4 Ham sausage meet and sausage

5 Meat sausage meet and sausage

6 finished products sausage meet and sausage

7 organic sausage sausage meet and sausage

8 Chicken poultry meet and sausage

9 Turkey poultry meet and sausage

10 Pork pork meet and sausage

11 Beef beef meet and sausage

12 hamburger meat beef meet and sausage

13 Fish fish meet and sausage

Improving the Performance of MS-Apriori Algorithm using Dynamic Matrix Technique and Map-Reduce Framework
(IJIRST/ Volume 2 / Issue 05/ 023)

All rights reserved by www.ijirst.org 155

14 citrus fruit fruit fruit and vegetables

15 tropical fruit fruit fruit and vegetables

16 pip fruit fruit fruit and vegetables

17 Grapes fruit fruit and vegetables

18 Berries fruit fruit and vegetables

19 nuts/prunes fruit fruit and vegetables

20 root vegetables vegetables fruit and vegetables

21 Onions vegetables fruit and vegetables

22 Herbs vegetables fruit and vegetables

23 other vegetables vegetables fruit and vegetables

24 packaged fruit/vegetables packaged fruit/vegetables fruit and vegetables

25 whole milk dairy produce fresh products

26 Butter dairy produce fresh products

27 Curd dairy produce fresh products

28 Dessert dairy produce fresh products

29 butter milk dairy produce fresh products

30 Yogurt dairy produce fresh products

31 whipped/sour cream dairy produce fresh products

32 Beverages dairy produce fresh products

33 UHT-milk shelf-stable dairy fresh products

34 condensed milk shelf-stable dairy fresh products

35 Cream shelf-stable dairy fresh products

Table 4.4 lists all the level-2 which exists in the entire grocery store transaction dataset.
Table - 4.4

Levels (Level-2) In the Database Groceries

1 baby food 29 hard drinks

2 Bags 30 health food

3 bakery improver 31 jam/sweet spreads

4 bathroom cleaner 32 long-life bakery products

5 Beef 33 meat spreads

6 Beer 34 non-alc. drinks

7 bread and backed goods 35 non-food house keeping products

8 Candy 36 non-food kitchen

9 canned fish 37 packaged fruit/vegetables

10 canned fruit/vegetables 38 perfumery

11 Cheese 39 personal hygiene

12 chewing gum 40 pet food/care

13 Chocolate 41 pork

14 Cleaner 42 poultry

15 Coffee 43 pudding powder

16 Condiments 44 sausage

17 Cosmetics 45 seasonal products

18 dairy produce 46 shelf-stable dairy

19 Delicatessen 47 snacks

20 dental care 48 soap

Improving the Performance of MS-Apriori Algorithm using Dynamic Matrix Technique and Map-Reduce Framework
(IJIRST/ Volume 2 / Issue 05/ 023)

All rights reserved by www.ijirst.org 156

21 detergent/softener 49 soups/sauces

22 Eggs 50 staple foods

23 Fish 51 sweetener

24 frozen foods 52 tea/cocoa drinks

25 Fruit 53 vegetables

26 games/books/hobby 54 vinegar/oils

27 Garden 55 wine

28 hair care

Table 4.5 lists all the level-2 which exists in the entire grocery store transaction dataset.
Table - 4.5

Levels (Level-1) In the Database Groceries

S. No. Level 1 / Category

1 canned food

2 Detergent

3 Drinks

4 fresh products

5 fruit and vegetables

6 meet and sausage

7 non-food

8 Perfumery

9 processed food

10 snacks and candies

 In total, there are 9835 transaction and 169 different items. Five items, viz; bags, kitchen utensils, preservation products, baby

food and sound storage medium are excluded from further analysis as these have support values 4,4,2,1 and 1 respectively which

is below the threshold considered, which is 6. The items in each of the transaction are sorted in the order of descending support

values. Thereafter, the transaction matrix can be prepared with rows indicating transactions and columns indicating items in the

order or ascending support count. The second level grouping of items gives 55 groups and the first level grouping gives 10

groups/categories as shown in table 4.4 and 4.5.

 The visualization of the sparce transition matrix of the complete grocery store transaction data (9835 rows and 164 columns) is

shown in figure 4.2.

Fig. 4.2: Visualization of sparse transaction matrix of complete grocery transaction data.

 The number of association rules generated depends upon the values of support and confidence of the rules. The number of

rules generated keeping all items separated, by grouping in level 2 groups and by grouping in level 1 group is shown in table 4.6.
Table - 4.6

Number Of Rules Generated As Function Of Support Value (Confidence = 0.5)

SUPPORT R R2 R1

0.001 5668 1160 144

0.002 1098 304 54

0.003 421 142 32

Improving the Performance of MS-Apriori Algorithm using Dynamic Matrix Technique and Map-Reduce Framework
(IJIRST/ Volume 2 / Issue 05/ 023)

All rights reserved by www.ijirst.org 157

0.004 197 75 21

0.005 120 49 18

0.006 67 33 13

0.007 45 20 8

0.008 30 13 6

0.009 25 13 6

0.01 15 9 4

The visualization of table 4.6 is shown in figure 4.3.

Fig 4.3: Number of Rules Generated (R, R2 and R1) as a function of Support (keeping confidence = 0.5)

 Table 4.7 lists the number of rules as a function of confidence by keeping the support value fixed at 0.001. The visualization

of table 4.7 is shown in figure 4.4.
Table - 4.7

Number of Rules Generated As Function of Confidence Value (Support = 0.001)

CONFIDENCE R R2 R1

0.1 32791 5053 390

0.2 21634 3481 318

0.3 13770 2383 243

0.4 8955 1633 176

0.5 5668 1160 144

0.6 2918 742 105

0.7 1279 425 75

0.8 410 191 50

0.9 129 78 27

1 28 24 13

Fig. 4.4: Number of Rules Generated (R, R2 and R1) as a function of Confidence (keeping support = 0.001)

Improving the Performance of MS-Apriori Algorithm using Dynamic Matrix Technique and Map-Reduce Framework
(IJIRST/ Volume 2 / Issue 05/ 023)

All rights reserved by www.ijirst.org 158

The scatter plot of all the 5663 rules obtained by keeping minimum support = 0.001 , and minimum confidence = 0.5 , are shown

in the figure 4.3.

Fig. 4.5: Scatter Plot for all rules

Fig. 4.6: Grouped Plot for all the Association Rules

 Using MapReduce Framework in Association Rule Mining in Dynamic Matrix MsApriori B.

 Setting up of the MFI Matrix 1)

Consider the transaction dataset as specified above with N = 9835 transactions and I = 169 distinct items. The first step is to

compute the support values of individual items and to sort them in the order of support values. Assuming that the list of elements

is unordered and considering the first 20 items of the list, the support count of individual items can be done in the way as

depicted in table 4.8.

 Consider a k=10 node cluster for implementing parallel processing environment. The computation workflow for MFI for

setting up item support vector is as shown:
Table - 4.8

Computation of Support Values of Different Items in DB

Node /Time 40,000 200

Node 1
Transactions 1-1000 <key1, value1>

Items 1-20

Improving the Performance of MS-Apriori Algorithm using Dynamic Matrix Technique and Map-Reduce Framework
(IJIRST/ Volume 2 / Issue 05/ 023)

All rights reserved by www.ijirst.org 159

Node 2
Transactions 1001-2000 <key2, value2>

Items 1-20

Node 3
Transactions 2001-3000 <key3, value3>

Items 1-20

Node 4
Transactions 3001-4000 <key4, value4>

Items 1-20

Node 5
Transactions 4001-5000 <key5, value5> REDUCE <key, value>

Items 1-20

Node 6
Transactions 5001-6000 <key6, value6>

Items 1-20

Node 7
Transactions 6001-7000 <key7, value7>

Items 1-20

Node 8
Transactions 7001-8000 <key8, value8>

Items 1-20

Node 9
Transactions 8001-9000 <key9, value9>

Items 1-20

Node 10
Transactions 9001-9835 <key10, value10>

Items 1-20

The time description at the top of the table 4.8 can be understood by table 4.9
Table - 4.9

Time Complexity Using Map Reduce

Operation Descriptions

 Time

Node i One item scan through DB and adding supports: 1000+1000 20*2000 = 40,000 time units

Additions 10*20 200

Loops 9 9*(40000+200)

 It is assumed that it takes a unit operation time in scanning a specific item in a transaction (on an average). Also, it takes unit

operation time in adding two numbers. Thus, to scan 20 items over a database of 1000 records, it takes 20000 units operation

time. Also, for summing these values consecutively after each scan, an additional 1000*20 operation time is need. For combining

these values as a single vector, 10*20 unit operational time is needed. Thus a total of 40200 unit operation time is needed for

phase 1. At the end of this phase, one has the support count values of the first 20 items of the unordered item list, in which the

key values are the list of items and the value holds the corresponding support values. A total of 9 rounds are needed, thus giving

a total time of 40010*9 = 361800. After this support value computation, the sorting operation on the itemset consisting of about

169 items which requires time of the order of O(n*logn) which equals to about 377. Thus, a total of about 362177 time units.

 On the other hand, if the same operation is performed over a uniprocessor system under same settings, the time required would

be 9835*169*2 = 3324230. This is because each item is checked in all the transactions, and for each transaction, the support

count, (either 1 or 0) is added to the computed number till that scan. The improvement in the time complexity in computing the

support values of distinct items and sorting them in the order of support values is depicted in figure 4.7.

Fig. 4.7: Comparison of Execution time over Uni-Processor and Cluster Environment. (Computation of Item Support Values and Item Sorting

thereafter)

Improving the Performance of MS-Apriori Algorithm using Dynamic Matrix Technique and Map-Reduce Framework
(IJIRST/ Volume 2 / Issue 05/ 023)

All rights reserved by www.ijirst.org 160

 It is evident that MapReduce framework provides an improvement of 94 percent as compared to the standalone solution.

 At the end of this iteration, the support values of all the elements are computed and the elements are sorted in descending

order of the support values. The time complexity of setting up of MFI matrix can be measured as shown in table 4.10.
Table - 4.10

Setting Up Of MFI

Node /Time

Binary Vectors

Node 1
Transactions 1-1000 <key1, value1>

Items All

Node 2
Transactions 1001-2000 <key2, value2>

Items All

Node 3
Transactions 2001-3000 <key3, value3>

Items All

Node 4
Transactions 3001-4000 <key4, value4>

Items All

Node 5
Transactions 4001-5000 <key5, value5> REDUCE <key, value>

Items All

Node 6
Transactions 5001-6000 <key6, value6>

Items All

Node 7
Transactions 6001-7000 <key7, value7>

Items All

Node 8
Transactions 7001-8000 <key8, value8>

Items All

Node 9
Transactions 8001-9000 <key9, value9>

Items All

Node 10
Transactions 9001-9835 <key10, value10>

Items All

 Each node processes entire sorted list of items, in the order of support values, and represent its 1000 transactions in terms of

binary vector of length 169 (item count), in which a 1 indicates the presence of the item and a zero indicates the absence of the

item. For each transaction, the binary representation is done in 169*n time units where n is the maximum number of items in any

transactions. Considering the average value of items in any transactions to be 10, the time unit operations in one vector

representation is 1690. Thus, for a total of 1000 transactions, the time required is 1690*1000 = 1690000. Also, each of the vector

is compared if it has already been existed or not, which takes 1000(1000+1)/2 comparisons for the entire set of 1000 records.

Each of this comparison has a time complexity of 169 as there are 169 elements in vector matching. Thus the computation of

comparison needs a time of 84584500 time units. These records are tabulated in STE matrix requiring 1000 time units. This

gives a total computation time of 86275500.

 After this matching, the individual blocks are matched again to remove the redundancy among the records. There are
10

C2 = 45

pairs of blocks, each requiring 10000 matching operations, thus requiring 450000 matching of vectors to remove redundancy.

Each such comparison matching requires 169 time units operation, thus giving a total of 76050000 time units operation. The

removal of the corresponding rows from STE and the increase in the count of redundant rows can be ignored. Thus, MapReduce

Architecture requires a total of 162325500 time unit operations to create MFI.

The time required by a uni-processor system for the same can be computed as follows:
Table - 4.11

Time Complexity Analysis of Uniprocessor System Architecture

Operation Time Complexity

One Vector Representation 1690 (Assuming 10 items average per transaction)

9835 Transactions 16621150

Comparison Operation 8450845000

STE Updating 10000

Total 8467477840

The comparison of the time complexity of Uniprocessor and MapReduce Architecture is shown in figure 4.8.

Improving the Performance of MS-Apriori Algorithm using Dynamic Matrix Technique and Map-Reduce Framework
(IJIRST/ Volume 2 / Issue 05/ 023)

All rights reserved by www.ijirst.org 161

Fig. 4.8: Comparison of Execution time over Uni-Processor and Cluster Environment. (Computation of Matrix of Frequent Items, MFI)

 Table 4.11 suggests a relative improvement of 94 percent using 10 node cluster framework in the computation of MFI. The

mining of association rules can be made in a straightforward way after the creation of MFI using the Apriori Property. Also, all

the elements are considered for frequent itemset mining in MsApriori. The combined support of a set of items is the minimum

support of any of the item belonging to the set and using this approach, the confidence values of rules are checked for association

rule mining. New items can be added in the matrix in batch mode ion which the batch size can be fixed depending upon the

relative accuracy desired in the results and without causing unnecessary reprocessing in the computation of support values and

MFI matrix. Section 5 analyses the results and concludes the paper.

V. CONCLUSION AND FUTURE SCOPE

Association rule mining aims to discover interesting patterns in a database. There are two steps in this data mining technique.

The first step is finding all frequent itemsets and the second step is generating association rules from these frequent itemsets.

Association rule mining algorithms generally focus on the first step since the second one is direct to implement. Although there

are a variety of frequent itemset mining algorithms, each one requires some pre-specified value of the minimum support count.

This results in inefficient mining of information as some of the infrequent rules get skipped away although these are of particular

interest. Moreover, classical Apriori algorithm is inefficient in the sense that complete database scan has to be performed for

generating k-frequent itemsets from K-1 frequent itemsets.

 The contribution of this paper is many fold. It first proposes Matrix Apriori for Multiple Minimum Support Values of the

items. The existing algorithm for implementing multiple minimum support is called MsApriori. Thus, a technique of

implementing MsApriori using Matrices, called Matrix MsApriori is presented. Moreover, a technique for solution of the

problem of mining association rules is presented using MapReduce Framework is presented. The MapReduce framework

employs clustering techniques implementing multiprocessing to solve large computational problems using divide and conquer

technique. The comparison of the analytical results over uni-processor and cluster is presented and the results are tabulated

which shows an improvement of about 94 percent using 10 node cluster over a transaction database consisting of 9835

transactions.

 As future scope, the same algorithm is to be implemented utilizing the domain specific heuristic knowledge to filter out

uninteresting rules from the interesting ones, to provide a complete solution as a whole, which relates to the issues of efficiency,

infrequent rule mining and dynamic database problem. Moreover, machine learning can also be implemented using the

categorical description of the item sets to give an insight into which of the rules may be investigated for being potentially

profitable. This can be done using the training sets based on the already discovered profitable association rules and thereby,

checking for the profitability of the new ones.

REFERENCES

[1] Agrawal, R., T. Imielinski, and A. Swami (1993). Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM

SIGMOD International Conference on Management of Data, SIGMOD ’93, New York, NY, USA, pp. 207–216. ACM.

[2] Agrawal, R. and R. Srikant (1994). Fast algorithms for mining association rules in large databases. In Proceedings of the 20th International Conference on
Very Large Data Bases, VLDB ’94, San Francisco, CA, USA, pp. 487–499. Morgan Kaufmann Publishers Inc.

[3] R.Agrawal, H.Mannila, R.Srikant, H.Toivonen, and A.I.Verkamo, Fast Discovery of Association Rules. In U. Fayyad et al. (eds), Advances in Knowledge

Discovery and Data Mining (Menlo Park, CA: AAAI Press, 1996, 307-328).
[4] Hong-Zhen Zheng, Dian-Hui Chu, De-Chen Zhan : Association Rule Algorithm Based on Bitmap and Granular Computing. AIML Journal, Volume (5),

Issue (3), September, 2005, pp. 51-54.

[5] Han, J. and M. Kamber (2006). Data Mining. Concepts and Techniques (2nd ed. ed.). Morgan Kaufmann.
[6] R. Agrawal, Heikki Mannila Fast Discovery for Mining Association Rules, International journal of computer applications, 2000, pp. 86-91.

[7] Pav´on, J., S. Viana, and S. G´omez (2006). Matrix apriori: Speeding up the search for frequent patterns. In Proceedings of the 24th IASTED International

Conference on Database and Applications, DBA’06, Anaheim, CA, USA, pp. 75–82. ACTA Press.
[8] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. In OSDI’04, 6th Symposium on Operating Systems Design and

Implementation, Sponsored by USENIX, in cooperation with ACM SIGOPS, pages 137–150, 2004.

Improving the Performance of MS-Apriori Algorithm using Dynamic Matrix Technique and Map-Reduce Framework
(IJIRST/ Volume 2 / Issue 05/ 023)

All rights reserved by www.ijirst.org 162

[9] J.Han, J.Pei, Y.Yin, Mining Frequent Patterns without Candidate Generation. In: Proceedings of ACM-SIGMOD International Conference on Management

of Data. Vol 29, No. 2, 2012, 1-12.
[10] M. Dimitrijevic, and Z. Bosnjak “Discovering interesting association rules in the web log usage data”. Interdisciplinary Journal of Information, Knowledge,

and Management, 5, 2010, pp.191-207.

[11] Rameshkumar, K.; Sambath, M.; Ravi, S., "Relevant association rule mining from medical dataset using new irrelevant rule elimination technique," in
Information Communication and Embedded Systems (ICICES), 2013 International Conference on , vol., no., pp.300-304, 21-22 Feb. 2013 doi:

10.1109/ICICES.2013.6508351.

[12] K. Yun Sing “Mining Non-coincidental Rules without a User Defined Support Threshold”. 2009.
[13] Sourav Mukherji, A framework for managing customer knowledge in retail industry, IIMB Management Review, Volume 24, Issue 2, June 2012, Pages 95-

103, ISSN 0970-3896, http://dx.doi.org/10.1016/j.iimb.2012.02.003.

[14] Jiao Yabing, "Research of an Improved Apriori Algorithm in Data Mining Association Rules," International Journal of Computer and Communication
Engineering vol. 2, no. 1, pp. 25-27 , 2013.

[15] C. Wang, R. Li, and M. Fan, “Mining Positively Correlated Frequent Itemsets,” Computer Applications, vol. 27, pp. 108-109, 2007.

[16] Kimmo Hatonen, Mika Klemettinen, Heikki Mannila, Pirjo Ronkainen, and Hannu Toivonen. Knowledge discovery from telecommunication network
alarm databases. In Stanley Y. W. Su, editor, Proceedings of the 12th International Conference on Data Engineering (ICDE’96), pages 115 – 122, New

Orleans, Louisiana, USA, February 1996. IEEE Computer Society Press.

[17] Mika Klemettinen. Rule Discovery from Telecommunication Network Alarm Databases. PhD thesis, Department of Computer Science, P.O. Box 26, FIN-
00014 University of Helsinki, Finland, January 1999.

[18] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining association rules between sets of items in large databases. In Peter Buneman and Sushil

Jajodia, editors, Proceedings of ACM SIGMOD International Conference on Management of Data (SIGMOD’93), pages 207 – 216, Washington, D.C.,
USA, May 1993. ACM.

[19] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen, and A. Inkeri Verkamo. Fast discovery of association rules. In Usama M.

Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, pages 307
– 328. AAAI Press, Menlo Park, California, USA, 1996.

[20] Awadalla, Medhat H. A.; El-Far, Sara G., " Aggregate Function Based Enhanced Apriori Algorithm for Mining Association Rules", International Journal of

Computer Science Issues (IJCSI);May2012, Vol. 9 Issue 3, p277, May 2012.
[21] Dehay, D.; Leskow, J.; Napolitano, A., "Central Limit Theorem in the Functional Approach," in Signal Processing, IEEE Transactions on , vol.61, no.16,

pp.4025-4037, Aug.15, 2013 doi: 10.1109/TSP.2013.2266324

[22] Vipul Mangla, Chandni Sarda, SarthakMadra), "Improving the efficiency of Apriori Algorithm in Data Mining", International Journel of Engineering and
Innovative technology, Volume 3, Issue 3 September 2013.

[23] Sumithra, R.; Paul, S., "Using distributed apriori association rule and classical apriori mining algorithms for grid based knowledge discovery," in

Computing Communication and Networking Technologies (ICCCNT), 2010 International Conference on , vol., no., pp.1-5, 29-31 July 2010 doi:
10.1109/ICCCNT.2010.5591577.

[24] Yew-Kwong Woon; Wee-Keong Ng; Das, A., "Fast online dynamic association rule mining," in Web Information Systems Engineering, 2001. Proceedings

of the Second International Conference on , vol.1, no., pp.278-287 vol.1, 3-6 Dec. 2001 doi: 10.1109/WISE.2001.996489.

