The Split and Non Split Majority Domonation in Fuzzy Graphs

DR. C. V. R. Harinarayanan
Research Supervisor & Assistant Professor
Government Arts College, Paramakudi.

S.Geetha
Assistant Professor
Kings College of Engineering, Punalkulam.

Dr.R.Muthuraj
Research Supervisor & Assistant Professor
H.H.The Rajah’s College(Autonomous), Pudukkottai

Abstract

A majority dominating set D of a fuzzy graph G is a split majority dominating set if the induced fuzzy sub graph \(\langle V - D \rangle \) is disconnected. A majority dominating set D of a fuzzy graph G is a non-split majority dominating set if induced fuzzy sub graph \(\langle V - D \rangle \) is connected. In this paper we study split and non-split majority domination in fuzzy graphs and its domination numbers \(\gamma_{SM}(G) \) and \(\gamma_{NSM}(G) \). Also bounds \(\gamma_{SM}(G) \) and \(\gamma_{NSM}(G) \) with other known parameters are discussed.

Keywords: Dominating set, Majority dominating set, split majority dominating set, non-split majority dominating set

I. INTRODUCTION

A subset \(D \subseteq V \) in a fuzzy graph G is called a majority dominating set if atleast half of the vertices of of G are either in D or adjacent to the vertices of D. More clearly \(|N(D)| \geq \left\lceil \frac{p}{2} \right\rceil \)

A majority dominating set D is minimal if no proper subset of D is a majority dominating set. The minimum fuzzy cardinality of a minimal majority dominating set is called the majority domination number and it is denoted by \(\gamma_{M}(G) \)

The split majority domination number \(\gamma_{SM}(G) \) of G is the minimum fuzzy cardinality of a minimal split majority dominating set.

A set D of vertices in a fuzzy graph G is dominating set if every vertex \(v \in V \) is either an element of D or adjacent to an element of D. A dominating set is called minimal dominating set if no proper subset of D is a dominating set. The minimum fuzzy cardinality of a minimal dominating set is called the domination number of a fuzzy graph G and it is denoted by \(\gamma(G) \)

A set D of vertices of a fuzzy graph G is said to be majority independent set if it induces a totally disconnected sub graph with \(|N(D)| \geq \left\lceil \frac{p}{2} \right\rceil \) \(\forall v \in D \).

If any vertex \(D' \) properly containing D is not majority independent set, then D is called maximal majority independent set. The maximum fuzzy cardinality of a maximal majority independent set is called majority independent number and it is denoted by \(\beta_{M}(G) \)

Example:
A. **Theorem:**

A majority dominating set D of a fuzzy graph G is split majority dominating set iff there exists two vertices w₁ and w₂ from two components of V-D such that w₁ - w₂ path contains a vertex of D.

Proof:

Suppose D is a split majority dominating set of G. Then \(|V - D| \) is disconnected and it must contain at least two components G₁ and G₂.

Let \(w₁ \in G₁ \) and \(w₂ \in G₂ \). Now \(w₁ - w₂ \) would be a path through a vertex \(v \in D \). This path contains a vertex \(u \) of D. Conversely, let D be a majority dominating set such that V-D is disconnected. This implies that D is a split majority dominating set of G.

B. **Theorem:**

If a fuzzy graph G has one cut vertex \(v \) and at least two blocks \(H₁ \) and \(H₂ \) with \(v \) adjacent to all vertices of \(H₁ \) and \(H₂ \), then \(v \) is in every \(SM \gamma \) set of G.

Proof:

Let \(D \) be a \(SM \gamma \) set of G. Then \(|V - D| \) is disconnected. This implies that \(D = \{ u, w \} \) is a split majority dominating set of G. This contradicts that \(v \) is adjacent to all vertices of \(H₁ \) and \(H₂ \). Hence, \(v \) is in every \(SM \gamma \) set of G.

C. **Theorem:**

For a fuzzy graph G

1) \(\kappa(G) \leq \gamma_{SM}(G) \leq \gamma(S)(G) \) where \(\kappa \) is vertex connectivity.

2) \(\gamma_M(G) \leq \gamma_{SM}(G) \)

3) \(\gamma_M(G) \leq \gamma_{SM}(G) \leq \gamma(G) \leq \gamma(S)(G) \)

Proof:

Let \(D \) be a \(\gamma \) set of a fuzzy graph G. Then \(D \) is also a split majority dominating set of G. Therefore \(\gamma_{SM}(G) \leq |D| = \gamma(S)(G) \)

If \(S \) is a \(SM \gamma \) set of G. Then \(|V - S| \) is disconnected.

Therefore, the minimum number of vertices in \(S \) would disconnect G and hence

\[\kappa(G) \leq |S| = \gamma_{SM}(G) \]

1) Since every split majority dominating set \(S \) of G is a majority dominating set of G,

\[\gamma_M(G) \leq |S| = \gamma_{SM}(G) \]

2) Since \(\gamma_{SM}(G) \leq \gamma(G) \), \(\gamma_M(G) \leq \gamma_{SM}(G) \) \(\gamma(G) \leq \gamma(S)(G) \) we have

\[\gamma_M(G) \leq \gamma_{SM}(G) \leq \gamma(G) \leq \gamma(S)(G) \]
D. Theorem:

A fuzzy tree T has a majority dominating vertex adjacent to more than one pendent vertex or T has a support vertex iff every

γ_M set of T is also a γ_{SM} set of T

1) **Proof:**

Let D be a γ_M set of a fuzzy tree T. Assume that T has a majority dominating set v adjacent to more than one pendent vertex.

Then v must be in D and so D is a γ_{SM} set of T.

Suppose v is not a supporting vertex in T. Then D contains either v or atleast one support adjacent to v or a nonsupport adjacent to v. In this case $\langle V - D \rangle$ is disconnected and so D is a γ_{SM} set of T.

Conversely, suppose every γ_M set D of T is also a γ_{SM} set of T. Then every γ_M set D of T is also a γ_{SM} set of T. Then every $\langle V - D \rangle$ is disconnected.

Case i) Suppose both minimal majority dominating set and minimal split majority dominating set contains only one vertex. Then T has a majority dominating vertex v and $D = \{v\}$ since the is disconnected, v is adjacent to more than one pendent vertex.

Case ii) Suppose γ_M set contains 2 or more vertices, then T has no majority dominating vertex v. So, we have the following cases:

1) D contains only supports
2) D contains only non support vertices
3) D contains non support and support vertices

E. Theorem:

For a fuzzy tree T every γ_{NSM} set contains at least one end vertex.

1) **Proof:**

Let D be a γ_{NSM} of a fuzzy tree T. Suppose D does not contain any end vertex v. Then D contains either support or intermediate vertices. If D contains only supports or only intermediate vertices or both supports and intermediate vertices, every vertex will be a cut vertex of G and $\langle V - D \rangle$ is disconnected.

Therefore, every γ_{NSM} set contains at least one end vertex.

F. Theorem:

Let $G = G_1$ and G_2 be fuzzy graphs. If the join $G = G_1 + G_2$, then $\gamma_{NSM}(G) \leq 1$

1) **Proof:**

Let $G = G_1 + G_2$ and $\langle V(G) \rangle = \langle V(G_1) \rangle \cup \langle V(G_2) \rangle \equiv p$, then by definition of a join of two fuzzy graphs G_1 and G_2, every vertex in G_1 is adjacent to every vertex in G_2.

Suppose $|G_1| = |G_2|$. Then $N(v) \geq \left\lceil \frac{p}{2} \right\rceil \forall v \in G_1 \cup G_2$.

Since $\delta(G^*) > 1$, $\langle V - D \rangle$ is connected.

Therefore $\gamma_{NSM}(G) \leq 1$. If $|G_1| < \left\lceil \frac{p}{2} \right\rceil$

Let $|G_1| < \left\lceil \frac{p}{2} \right\rceil$. Then $|G_2| \geq \left\lceil \frac{p}{2} \right\rceil$.

Since every vertex in G_1 is adjacent to every vertex in G_2, $N(v) > \left\lceil \frac{p}{2} \right\rceil \forall v \in G_1$ and $\langle V - D \rangle$ is connected. In the same way we prove the theorem $|G_2| < \left\lceil \frac{p}{2} \right\rceil$.

Therefore $\gamma_{NSM}(G) \leq 1$.
The Split and Non Split Majority Domination in Fuzzy Graphs
(IJIRST/ Volume 3 / Issue 12/004)

REFERENCES

