Efficiency Server Privacy on Location based Query

Dr. Kopparthi Suresh
Bhimavaram Institute of Engineering and Technology

P. Subbaraju
S.R.K.R Engineering College

D. Ratnagiri
S.R.K.R Engineering College

P. Nagaraju
Sri Vishnu Institute of Technology, Bhimavaram

Abstract

The Present’s modern world, it is very facile for a person to ken his/her location with the avail of contrivances having GPS facility. When user’s location is provided to LBS, it is possible to user to ken all location dependent information like as location of friends or Most Proximate Restaurant, whether or traffic conditions. The massive utilization of mobile contrivances pave the way for the engenderment of wireless networks that can be habituated to exchange information predicated on locations. When the exchange of location information is done amongst entrusted parties, the privacy of the user could be in deleterious. Subsisting protocol doesn’t work on many different mobile contrivances and another issue is that, Location Server (LS) should provide illuding data to user. So we are working on enhancement of this protocol.

Keywords: Location based Query, Location Server, Privacy, Efficiency

I. INTRODUCTION

A location predicated accommodation (LBS) is an information, regalement and utility accommodation generally accessible by mobile contrivances such as, mobile phones, GPS contrivances, pocket PCs, and operates through a mobile network. A LBS can offer many accommodations to the users predicated on the geographical position of their mobile contrivance. The accommodations provided by a LBS are typically predicated on a point of interest database. By retrieving the Points of Interest (POIs) from the database server, the user can get answers to sundry location predicated queries, which include but are not constrained to - discovering the most proximate ATM machine, gas station, hospital, or police station. In recent years there has been a dramatic increase in the number of mobile contrivances querying location servers for information about POIs. Among many challenging barriers to the wide deployment of such application, privacy assurance is a major issue. For instance, users may feel reluctant to disclose their locations to the LBS, because it may be possible for a location server to learn who is making a certain query by linking these locations with a residential phone book database, since users are liable to perform many queries from home. The Location Server (LS), which offers some LBS and spends its resources to compile information about sundry intriguing POIs. So, it is expected that the LS would not disclose any information without fees. Therefore, the LBS has to ascertain that LS’s data is not accessed by any invalid user. During the process of transmission the users should not be sanctioned to discover any information for which they have not paid. It is thus crucial that solutions be devised that address the privacy of the users issuing queries, but additionally avert users from accessing content to which they do not have sanction.

II. RELATED WORK

A. Existing System

The Location Server (LS), offers some LBS, spends LS resources to compile information about sundry intriguing POIs. Hence, it is expected that the LS would not disclose any information without fees. So that the LBS has to ascertain that LS’s data is not accessed by any invalid user. During the process of transmission the users should not be sanctioned to discover any information for which they have not paid. It is thus crucial that solutions be devised that address the privacy of the users issuing queries, but additionally avert users from accessing content to which they do not have sanction.
B. Proposed System

Proposed System organized according to two stages. Stage one, the utilizer privately determines his/her location within a public grid, utilizing oblivious transfer. This data contains both the ID and associated symmetric key for the block of data in the private grid. Second stage, the user executes a communicational efficient PIR, to retrieve the felicitous block in the private grid. This block is decrypted utilizing the symmetric key obtained in the antecedent stage. Proposed System protocol thus provides auspice for both the utilizer and the server. Utilizer is bulwarked because the server is unable to determine his/her location. Same way, the server’s data is forfended since a malignant utilizer can only decrypt the block of data obtained by PIR with the encryption key acquired in the antecedent stage. In other words, users cannot gain any more data than what they have paid for. Found remark that this paper is an enhancement of an antecedent work.

C. The Location Privacy Protocols on Application Layer

1) K-Anonymity

K-anonymity [12][13] is a popular solution for providing location privacy[10] to users. The concept emanates from achieving privacy in data mining, such that when relational data including private data of many users 26 will be relinquished, K-anonymity auspice mechanism is applied on the data to forfend privacy of users.

Since one of the aims of this project is to investigate subsisting protocols on location privacy, the investigation commenced from K-anonymity. It has both strengths and impuissances. For example, when a utilizer is located in a crowd, K-anonymity can provide expeditious and simple solution. Since there are an abundance of people around the utilizer, it is very facile to compose a cloaked region that users can obnubilate underneath it. If the utilizer is present in that area arbitrarily, he/she can rely on K-anonymity. However, its impotency is the k value and working in a discrete and independent manner. Utilization of k value emanates from a data mining perspective and it is not congruous for preserving location privacy[10] most of the time. For example, an adversary might have cognizance about a user’s home and work locations.

D. Metrics for the Location Privacy

1) Uncertainty-Based Metric:

Dubiousness-predicated metric considers only the entropy of events of a utilizer. It is a very general solution. It is not opportune for estimating the probabilistic nature of the adversary. It is very hard to model the adversary; because the adversary’s cognizance and probability assignment are unknown. Besides, the adversary can cull erroneous events as favorite. Thus, the precision of the adversary is another variable in the system. Skepticality-predicated metric cannot capture this kind of detail. It is additionally not felicitous for calculating tracking errors that is identification of traces of users.

2) Clustering Error Based Metric:

In clustering error predicated metric, adversary gets observed events and partitions them into multiple subsets for each utilizer. The error in partitioning betokens the location privacy[10] of the system. Here, the observed events are transformation of the genuine events. For instance, a mechanism, such as anonymization or obfuscation, etc., is applied on authentic events in order to forfend location information of the utilizer from disclosure to public. In this metric, there are two quandaries that are calculation of set of all possible partitions and congruousness for tracing.

3) Traceability-Based Metric:

Traceability-predicated metric aims to estimate certainty of an adversary in tracking a utilizer. It is mentioned that a utilizer will be traceable until a point in time or location. This point is called a perplexity point; as the adversary’s dubiousness is above a threshold. [15] It is withal mentioned that querying the LBS periodically, in time space, exposes sensitive locations for users. They suggest that querying the LBS can be done predicated on areas, which denotes that 28 the users do not send queries or the LBS does not expect queries at some locations, which are private areas to utilize the accommodation. Those places are out of the range of the accommodation.

4) Distortion-Based Metric:

The set of criteria, which is utilized to evaluate subsisting location privacy[10] metrics, is composed of adversary’s probability of error and tracking error, users’ authentic traces and private location-time couples, quantification of traceability of users, genericity of the metric and the granularity of the resulting location privacy value. Each criterion reveals more insight about the quandary and subsisting metrics. For example, adversary can make mistakes; but dubiousness predicated metrics or K-anonymity metric is not able to count in adversary’s error in probability assignment or tracking users. Furthermore, considering authentic traces of users at all times is withal consequential, because it avails to assess how prosperous the adversary is in tracking a utilizer.

E. System Architecture

The system model consists of three types of entities (see Fig. 1):

1) Users
2) Mobile service provider
3) Location server
III. IMPLEMENTATION

A. Users:
The users in our model utilize some location-predicated accommodation provided by the location server LS. For example, what is the most proximate ATM or restaurant? The purport of the mobile accommodation provider SP is to establish and maintain the communication between the location server and the utilizer. The location server LS owns a set of POI records ri for 1 ≤ ri ≤ ρ. Each record describes a POI, giving GPS coordinates to its location (xgps, ygps), and a description or name about what is at the location.

B. Mobile Service Provider
We plausibly surmise that the mobile accommodation provider SP is a passive entity and is not sanctioned to collude with the LS. We make this posit because the SP can determine the whereabouts of a mobile contrivance, which, if sanctioned to collude with the LS, thoroughly subverts any method for privacy. There is simply no technological method for obviating this assailment. As a consequence of this posit, the utilizer is able to either use GPS (Ecumenical Situating System) or the mobile accommodation provider to acquire his/her coordinates.

C. Location Server
We are postulating that the mobile accommodation provider SP is trusted to maintain the connection, we consider only two possible adversaries. Each and every one for individual communication direction. We consider the case in which the utilizer is the adversary and endeavors to obtain more than he/she is sanctioned. Next we consider the case in which the location server LS is the adversary, and endeavors to uniquely associate a utilizer with a grid coordinate.

IV. EXPERIMENTAL RESULTS

Fig. 1: System Architecture Model.

Fig. 2: Project Home page.
Fig. 3: Location Server users Accepting Page.

Fig. 4: User Query Generation Page.

Fig. 5: User PIR Protocol Generation Page.
In this paper we have presented a location predicated query solution that utilized for a utilizer to privately determine his/her location utilizing oblivious transfer[4] on a public grid a private information retrieval interaction that retrieves the record with high communication efficiency. According to our analysis of cognate work on the location privacy, we decided to implement the location privacy[10] evaluation model of Distortion-Predicated Metric [15], which we used to assess our implementation of K-anonymity solution. The modifications that we have done on K-anonymity implementation of [20] were elimination of personalization and adaptation to the evaluation model of Distortion-Predicated Metric. We have eliminated personalization from K-anonymity; because we aimed to observe results of K-anonymity protocol when it covers k-many users at a time, hence we made it work in all cases. We analyzed the performance of our protocol and discerned it to be both computationally and communication ally more efficient than the other subsisting solutions.

V. CONCLUSION

Fig. 6: User Get Location Page.

Fig. 7: User Private Information retrieval Page.

In this paper we have presented a location predicated query solution that utilized for a utilizer to privately determine his/her location utilizing oblivious transfer[4] on a public grid a private information retrieval interaction that retrieves the record with high communication efficiency. According to our analysis of cognate work on the location privacy, we decided to implement the location privacy[10] evaluation model of Distortion-Predicated Metric [15], which we used to assess our implementation of K-anonymity solution. The modifications that we have done on K-anonymity implementation of [20] were elimination of personalization and adaptation to the evaluation model of Distortion-Predicated Metric. We have eliminated personalization from K-anonymity; because we aimed to observe results of K-anonymity protocol when it covers k-many users at a time, hence we made it work in all cases. We analyzed the performance of our protocol and discerned it to be both computationally and communication ally more efficient than the other subsisting solutions.
REFERENCES

